3 resultados para Finite difference time-domain analysis
em Dalarna University College Electronic Archive
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
This paper analyzes empirically the effect of crude oil price change on the economic growth of Indian-Subcontinent (India, Pakistan and Bangladesh). We use a multivariate Vector Autoregressive analysis followed by Wald Granger causality test and Impulse Response Function (IRF). Wald Granger causality test results show that only India’s economic growth is significantly affected when crude oil price decreases. Impact of crude oil price increase is insignificantly negative for all three countries during first year. In second year, impact is negative but smaller than first year for India, negative but larger for Bangladesh and positive for Pakistan.
Resumo:
This study aims to investigate the relation between foreign direct investment (FDI) and per capita gross domestic product (GDP) in Pakistan. The study is based on a basic Cobb-Douglas production function. Population over age 15 to 64 is used as a proxy for labor in the investigation. The other variables used are gross capital formation, technological gap and a dummy variable measuring among other things political stability. We find positive correlation between GDP per capita in Pakistan and two variables, FDI and population over age 15 to 64. The GDP gap (gap between GDP of USA and GDP of Pakistan) is negatively correlated with GDP per capita as expected. Political instability, economic crisis, wars and polarization in the society have no significant impact on GDP per capita in the long run.