1 resultado para Engineering problems
em Dalarna University College Electronic Archive
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Archive of European Integration (2)
- Aston University Research Archive (15)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (95)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (5)
- Biodiversity Heritage Library, United States (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (6)
- CentAUR: Central Archive University of Reading - UK (9)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (8)
- Cochin University of Science & Technology (CUSAT), India (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (51)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- Digital Repository at Iowa State University (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (7)
- Galway Mayo Institute of Technology, Ireland (1)
- Greenwich Academic Literature Archive - UK (3)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (9)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (128)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (4)
- Martin Luther Universitat Halle Wittenberg, Germany (13)
- Nottingham eTheses (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (31)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (27)
- Repositorio Institucional Universidad de Medellín (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (49)
- Scielo Saúde Pública - SP (22)
- Scielo Uruguai (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (14)
- Universidad Politécnica de Madrid (39)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (78)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (53)
- Université de Montréal, Canada (3)
- University of Michigan (41)
- University of Queensland eSpace - Australia (177)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Quadratic assignment problems (QAPs) are commonly solved by heuristic methods, where the optimum is sought iteratively. Heuristics are known to provide good solutions but the quality of the solutions, i.e., the confidence interval of the solution is unknown. This paper uses statistical optimum estimation techniques (SOETs) to assess the quality of Genetic algorithm solutions for QAPs. We examine the functioning of different SOETs regarding biasness, coverage rate and length of interval, and then we compare the SOET lower bound with deterministic ones. The commonly used deterministic bounds are confined to only a few algorithms. We show that, the Jackknife estimators have better performance than Weibull estimators, and when the number of heuristic solutions is as large as 100, higher order JK-estimators perform better than lower order ones. Compared with the deterministic bounds, the SOET lower bound performs significantly better than most deterministic lower bounds and is comparable with the best deterministic ones.