2 resultados para Engineering and state
em Dalarna University College Electronic Archive
Resumo:
Background: Constructive alignment (CA) is a pedagogical approach that emphasizes the alignment between the intended learning outcomes (ILOs), teaching and learning activities (TLAs) and assessment tasks (ATs) as well as creation of a teaching/learning environment where students will be able to actively create their knowledge. Objectives: This paper aims at investigating the extent of constructively-aligned courses in Computer Engineering and Informatics department at Dalarna University, Sweden. This study is based on empirical observations of teacher’s perceptions of implementation of CA in their courses. Methods: Ten teachers (5 from each department) were asked to fill a paper-based questionnaire, which included a number of questions related to issues of implementing CA in courses. Results: Responses to the items of the questionnaire were mixed. Teachers clearly state the ILOs in their courses and try to align the TLAs and ATs to the ILOs. Computer Engineering teachers do not explicitly communicate the ILOs to the students as compared to Informatics teachers. In addition, Computer Engineering teachers stated that their students are less active in learning activities as compared to Informatics teachers. When asked about their subjective ratings of teaching methods all teachers stated that their current teaching is teacher-centered but they try to shift the focus of activity from them to the students. Conclusions: From teachers’ perspectives, the courses are partially constructively-aligned. Their courses are “aligned”, i.e. ILOs, TLAs and ATs are aligned to each other but they are not “constructive” since, according to them, there was a low student engagement in learning activities, especially in Computer Engineering department.
Resumo:
Objective: For the evaluation of the energetic performance of combined renewable heating systems that supply space heat and domestic hot water for single family houses, dynamic behaviour, component interactions, and control of the system play a crucial role and should be included in test methods. Methods: New dynamic whole system test methods were developed based on “hardware in the loop” concepts. Three similar approaches are described and their differences are discussed. The methods were applied for testing solar thermal systems in combination with fossil fuel boilers (heating oil and natural gas), biomass boilers, and/or heat pumps. Results: All three methods were able to show the performance of combined heating systems under transient operating conditions. The methods often detected unexpected behaviour of the tested system that cannot be detected based on steady state performance tests that are usually applied to single components. Conclusion: Further work will be needed to harmonize the different test methods in order to reach comparable results between the different laboratories. Practice implications: A harmonized approach for whole system tests may lead to new test standards and improve the accuracy of performance prediction as well as reduce the need for field tests.