2 resultados para Engineering, Civil|Engineering, Industrial|Computer Science

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, it has been observed that software clones and plagiarism are becoming an increased threat for one?s creativity. Clones are the results of copying and using other?s work. According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all redundant code is a clone.On basis of this background knowledge ,in order to safeguard one?s idea and to avoid intentional code duplication for pretending other?s work as if their owns, software clone detection should be emphasized more. The objective of this paper is to review the methods for clone detection and to apply those methods for finding the extent of plagiarism occurrence among the Swedish Universities in Master level computer science department and to analyze the results.The rest part of the paper, discuss about software plagiarism detection which employs data analysis technique and then statistical analysis of the results.Plagiarism is an act of stealing and passing off the idea?s and words of another person?s as one?s own. Using data analysis technique, samples(Master level computer Science thesis report) were taken from various Swedish universities and processed in Ephorus anti plagiarism software detection. Ephorus gives the percentage of plagiarism for each thesis document, from this results statistical analysis were carried out using Minitab Software.The results gives a very low percentage of Plagiarism extent among the Swedish universities, which concludes that Plagiarism is not a threat to Sweden?s standard of education in computer science.This paper is based on data analysis, intelligence techniques, EPHORUS software plagiarism detection tool and MINITAB statistical software analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A challenge for the clinical management of advanced Parkinson’s disease (PD) patients is the emergence of fluctuations in motor performance, which represents a significant source of disability during activities of daily living of the patients. There is a lack of objective measurement of treatment effects for in-clinic and at-home use that can provide an overview of the treatment response. The objective of this paper was to develop a method for objective quantification of advanced PD motor symptoms related to off episodes and peak dose dyskinesia, using spiral data gathered by a touch screen telemetry device. More specifically, the aim was to objectively characterize motor symptoms (bradykinesia and dyskinesia), to help in automating the process of visual interpretation of movement anomalies in spirals as rated by movement disorder specialists. Digitized upper limb movement data of 65 advanced PD patients and 10 healthy (HE) subjects were recorded as they performed spiral drawing tasks on a touch screen device in their home environment settings. Several spatiotemporal features were extracted from the time series and used as inputs to machine learning methods. The methods were validated against ratings on animated spirals scored by four movement disorder specialists who visually assessed a set of kinematic features and the motor symptom. The ability of the method to discriminate between PD patients and HE subjects and the test-retest reliability of the computed scores were also evaluated. Computed scores correlated well with mean visual ratings of individual kinematic features. The best performing classifier (Multilayer Perceptron) classified the motor symptom (bradykinesia or dyskinesia) with an accuracy of 84% and area under the receiver operating characteristics curve of 0.86 in relation to visual classifications of the raters. In addition, the method provided high discriminating power when distinguishing between PD patients and HE subjects as well as had good test-retest reliability. This study demonstrated the potential of using digital spiral analysis for objective quantification of PD-specific and/or treatment-induced motor symptoms.