20 resultados para Energy efficient buildings
em Dalarna University College Electronic Archive
Resumo:
The aim of the study is to develop a model for the energy balance of buildings that includes the effect from the radiation properties of interior and exterior surfaces of the building envelope. As a first step we have used ice arenas as case study objects to investigate the importance of interior low emissivity surfaces. Measurements have been done in two ice arenas in the north part of Sweden, one with lower and one with higher ceiling emissivity. The results show that the low emissivity ceiling gives a much lower radiation temperature interacting with the ice under similar conditions. The dynamic modelling of the roof in ice arenas shows a similar dependence of the roof-to-ice heat flux and the ceiling emissivity.A second part of the study focus on how to realise paints with very low thermal emissivity to be used on interior building surfaces.
Resumo:
With the building sector accounting for around 40% of the total energy consumption in the EU, energy efficiency in buildings is and continues to be an important issue. Great progress has been made in reducing the energy consumption in new buildings, but the large stock of existing buildings with poor energy performance is probably an even more crucial area of focus. This thesis deals with energy efficiency measures that can be suitable for renovation of existing houses, particularly low-temperature heating systems and ventilation systems with heat recovery. The energy performance, environmental impact and costs are evaluated for a range of system combinations, for small and large houses with various heating demands and for different climates in Europe. The results were derived through simulation with energy calculation tools. Low-temperature heating and air heat recovery were both found to be promising with regard to increasing energy efficiency in European houses. These solutions proved particularly effective in Northern Europe as low-temperature heating and air heat recovery have a greater impact in cold climates and on houses with high heating demands. The performance of heat pumps, both with outdoor air and exhaust air, was seen to improve with low-temperature heating. The choice between an exhaust air heat pump and a ventilation system with heat recovery is likely to depend on case specific conditions, but both choices are more cost-effective and have a lower environmental impact than systems without heat recovery. The advantage of the heat pump is that it can be used all year round, given that it produces DHW. Economic and environmental aspects of energy efficiency measures do not always harmonize. On the one hand, lower costs can sometimes mean larger environmental impact; on the other hand there can be divergence between different environmental aspects. This makes it difficult to define financial subsidies to promote energy efficiency measures.
Resumo:
This paper uses examples from a Swedish study to suggest some ways in which cultural variation could be included in studies of thermal comfort. It is shown how only a slight shift of focus and methodological approach could help us discover aspects of human life that add to previous knowledge within comfort research of how human beings perceive and handle warmth and cold. It is concluded that it is not enough for buildings, heating systems and thermal control devices to be energy-efficient in a mere technical sense. If these are to help to decrease, rather than to increase, energy consumption, they have to support those parts of already existing habits and modes of thought that have the potential for low energy use. This is one reason why culture-specific features and emotional cores need to be investigated and deployed into the study and development of thermal comfort.
Resumo:
The need for heating and cooling in buildings constitutes a considerable part of the total energy use in a country and reducing this need is of outmost importance in order to reach national and international goals for reducing energy use and emissions. One important way of reaching these goals is to increase the proportion of renewable energy used for heating and cooling of buildings. Perhaps the largest obstacle with this is the often occurring mismatch between the availability of renewable energy and the need for heating or cooling, hindering this energy to be used directly. This is one of the problems that can be solved by using thermal energy storage (TES) in order to save the heat or cold from when it is available to when it is needed. This thesis is focusing on the combination of TES techniques and buildings to achieve increased energy efficiency for heating and cooling. Various techniques used for TES as well as the combination of TES in buildings have been investigated and summarized through an extensive literature review. A survey of the Swedish building stock was also performed in order to define building types common in Sweden. Within the scope of this thesis, the survey resulted in the selection of three building types, two single family houses and one office building, out of which the two residential buildings were used in a simulation case study of passive TES with increased thermal mass (both sensible and latent). The second case study presented in the thesis is an evaluation of an existing seasonal borehole storage of solar heat for a residential community. In this case, real measurement data was used in the evaluation and in comparisons with earlier evaluations. The literature reviews showed that using TES opens up potential for reduced energy demand and reduced peak heating and cooling loads as well as possibilities for an increased share of renewable energy to cover the energy demand. By using passive storage through increased thermal mass of a building it is also possible to reduce variations in the indoor temperature and especially reduce excess temperatures during warm periods, which could result in avoiding active cooling in a building that would otherwise need it. The analysis of the combination of TES and building types confirmed that TES has a significant potential for increased energy efficiency in buildings but also highlighted the fact that there is still much research required before some of the technologies can become commercially available. In the simulation case study it was concluded that only a small reduction in heating demand is possible with increased thermal mass, but that the time with indoor temperatures above 24 °C can be reduced by up to 20%. The case study of the borehole storage system showed that although the storage system worked as planned, heat losses in the rest of the system as well as some problems with the system operation resulted in a lower solar fraction than projected. The work presented within this thesis has shown that TES is already used successfully for many building applications (e.g. domestic hot water stores and water tanks for storing solar heat) but that there still is much potential in further use of TES. There are, however, barriers such as a need for more research for some storage technologies as well as storage materials, especially phase change material storage and thermochemical storage.
Resumo:
In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.
Resumo:
Ska energimålen med halvering av energianvändningen kunna nås i länet måste småhusägare och ägare av mindre flerbostadshus övertygas om nyttan och möjligheter med att energieffektivisera i egna byggnader. Genom att använda en metod för paketering av energisparåtgärder kan byggnader energirenoveras på ett effektivt sätt och energianvändningen kan på så sätt minimeras. BELOK Totalprojekt är en metod för energieffektivisering i kommersiella byggnader genom renovering med åtgärdspaket. Metoden har även använts för flerbostadshus och uppgiften i den här rapporten är att undersöka ifall samma metod kan vara lämplig att använda även för småhus. Resultaten visar att metoden mycket väl kan användas även för småhus, men att vissa anpassningar är nödvändiga för att småhusägare ska kunna relatera till resultatet. Vid renovering i småhus kan många olika aktörer vara inblandade beroende på hur småhusägaren väljer att utföra en renovering. Om småhusägaren själv gör huvuddelen av arbetet är det lämpligt att Energikalkylen eller motsvarande kan användas för att göra en förenklad energianalys av byggnaden för att sedan föra över data till BELOK Totalverktyg, där det ekonomiska utfallet för renoveringspaket illustreras. Uppföljningen efter slutförd renovering är något som till exempel energibolag skulle kunna erbjuda tjänster för. Om småhusägaren väljer att anlita en energikonsult för den initiala analysen av byggnaden kan BELOK Totalprojekt användas mer i sin helhet men detta innebär förstås en högre kostnad för småhusägaren. För att öppna upp för fler möjligheter för småhusägare att totalrenovera är det viktigt att även involvera banksektorn för att diskutera ett upplägg för lån till energieffektivisering. Här kan även styrmedel av karaktären statliga lånegarantier eller ROT-avdrag för energieffektivisering vara aktuella att ta upp till diskussion. Slutligen är kommunikation med småhusägarna väldigt viktig och här är aktörer som redan idag har kontakt med småhusägare centrala. Två sådana aktörer är energibolag samt Villaägarnas Riksförbund.
Resumo:
Objective: For the evaluation of the energetic performance of combined renewable heating systems that supply space heat and domestic hot water for single family houses, dynamic behaviour, component interactions, and control of the system play a crucial role and should be included in test methods. Methods: New dynamic whole system test methods were developed based on “hardware in the loop” concepts. Three similar approaches are described and their differences are discussed. The methods were applied for testing solar thermal systems in combination with fossil fuel boilers (heating oil and natural gas), biomass boilers, and/or heat pumps. Results: All three methods were able to show the performance of combined heating systems under transient operating conditions. The methods often detected unexpected behaviour of the tested system that cannot be detected based on steady state performance tests that are usually applied to single components. Conclusion: Further work will be needed to harmonize the different test methods in order to reach comparable results between the different laboratories. Practice implications: A harmonized approach for whole system tests may lead to new test standards and improve the accuracy of performance prediction as well as reduce the need for field tests.
Resumo:
Transportation is seen as one of the major sources of CO2 pollutants nowadays. The impact of increased transport in retailing should not be underestimated. Most previous studies have focused on transportation and underlying trips, in general, while very few studies have addressed the specific affects that, for instance, intra-city shopping trips generate. Furthermore, most of the existing methods used to estimate emission are based on macro-data designed to generate national or regional inventory projections. There is a lack of studies using micro-data based methods that are able to distinguish between driver behaviour and the locational effects induced by shopping trips, which is an important precondition for energy efficient urban planning. The aim of this study is to implement a micro-data method to estimate and compare CO2 emission induced by intra-urban car travelling to a retail destination of durable goods (DG), and non-durable goods (NDG). We estimate the emissions from aspects of travel behaviour and store location. The study is conducted by means of a case study in the city of Borlänge, where GPS tracking data on intra-urban car travel is collected from 250 households. We find that a behavioural change during a trip towards a CO2 optimal travelling by car has the potential to decrease emission to 36% (DG), and to 25% (NDG) of the emissions induced by car-travelling shopping trips today. There is also a potential of reducing CO2 emissions induced by intra-urban shopping trips due to poor location by 54%, and if the consumer selected the closest of 8 existing stores, the CO2 emissions would be reduced by 37% of the current emission induced by NDG shopping trips.
Resumo:
The newly adopted energy efficiency directive (2012/27/EU) highlights the importance of energy efficiency in reaching the Union’s 2020 targets. The directive commits member states to defining national energy efficiency targets (art. 3), achieving yearly energy savings of 1.5% of the annual energy sales through the energy efficiency obligation scheme (art. 7), and providing a long-term strategy for the building sector that aims at a 3% refurbishment rate for public buildings (art. 4+5). Buildings currently account for 40% of energy use in most countries, putting them among the largest end-use sectors. This report takes a closer look at the best practices for implementing increasing energy efficiency in different regions and countries in Europe. The final aim is to identify some policy tools to be suggested to the region of Dalarna (Dalarna having been chosen as the pilot county in Sweden) as a means of implementing energy efficiency in the building sector. The final objective is to give analysts and decision-makers a better analytical foundation to explore future policy development in the area of buildings to be proposed and tested at the regional level in Dalarna and later at the national level in Sweden.
Resumo:
Advanced Building Energy Data Visualization is a way to detect performance problems in commercialbuildings. By placing sensors in a building that collects data from example, air temperature and electricalpower, then makes it possible to calculate the data in Data Visualization software. This softwaregenerates visual diagrams so the building manager or building operator can see if for example thepower consumption is to high.A first step (before sensors are installed in a building) to see how the energy consumption is in abuilding can be to use a Benchmarking Tool. There is a number of Benchmarking Tools that is availablefor free on the Internet. Each tool have a bit different approach, but they all show how much energyconsumption there is in a building compared to other similar buildings.In this study a new web design for the benchmarking tool CalARCH has been developed. CalARCHis developed at the Berkeley Lab in Berkeley, California, USA. CalARCH uses data collected only frombuildings in California, and is only for comparing buildings in California with other similar buildingsin the state.Five different versions of the web site were made. Then a web survey was done to determine whichversion would be the best for CalARCH. The results showed that Version 5 and Version 3 was the best.Then a new version was made, based on these two versions. This study was made at the LawrenceBerkeley Laboratory.
Resumo:
Various pellet heating systems are marketed in Sweden, some of them in combination with a solar heating system. Several types of pellet heating units are available and can be used for a combined system. This article compares four typical combined solar and pellet heating systems: System 1 and 2 two with a pellet stove, system 3 with a store integrated pellet burner and system 4 with a pellet boiler. The lower efficiency of pellet heaters compared to oil or gas heaters increases the primary energy demand. Consequently heat losses of the various systems have been studied. The systems have been modeled in TRNSYS and simulated with parameters identified from measurements. For almost all systems the flue gas losses are the main heat losses except for system 3 where store heat losses prevail. Relevant are also the heat losses of the burner and the boiler to the ambient. Significant leakage losses are noticed for system 3 and 4. For buildings with an open internal design system 1 is the most efficient solution. Other buildings should preferably apply system 3. The right choice of the system depends also on whether the heater is placed inside or outside of the heated are. A large potential for system optimization exist for all studied systems, which when applied could alter the relative merits of the different system types.
Resumo:
Different shapes of asymmetric awnings for east and west windows are investigated mathematically as well as by measurement in a model. A box with 90 cm side and a 30x30 cm window was placed outdoor in overcast weather and the daylight factor was measured at the bottom of the box when the window was unshaded or equipped with different awnings. The average daylight factor in the box decreased from 4.6% for the unshaded window to 1.0% when a full awning was used. With “the best” asymmetrical awning, the average daylight factor was 80% larger than with the full awing. Using Dutch climate, calculation of the energy from direct radiation transmitted through the window during the cooling season showed that this was decreased from 100% as an annual mean for the unshaded window down 22% with a full awing. With “the best” asymmetrical awning, 26% of the energy was transmitted. Calculation of the indoor temperature in a hypothetical row house in Netherlands show that the use of either normal or asymmetrical awnings considerable decrease the indoor temperature during the hot season. Therefore the use of asymmetrical awnings for east or west faced windows considerable can increase the daylight in buildings, with almost no change in overheating, compared to if traditional awnings are used.
Resumo:
Research on solar combisystems for the Nordic and Baltic countries have been carriedout. The aim was to develop competitive solar combisystems which are attractive tobuyers and to educate experts in the solar heating field.The participants of the projects were the universities: Technical University of Denmark,Dalarna University, University of Oslo, Riga Technical University and Lund Institute ofTechnology, as well as the companies: Metro Therm A/S (Denmark), Velux A/S(Denmark), Solentek AB (Sweden), SolarNor (Norway) and SIA Grandeg (Latvia).The project included education, research, development and demonstration. Theactivities started in 2003 and were finished by the end of 2006. A number of Ph.D.studies in Denmark, Sweden and Latvia, and a post-doc. study in Norway were carriedout. Close cooperation between the researchers and the industry partners ensured thatthe results of the projects can be utilized. The industry partners will soon be able tobring the developed systems into the market.In Denmark and Norway the research and development focused on solarheating/natural gas systems, and in Sweden and Latvia the focus was on solarheating/pellet systems. Additionally, Lund Institute of Technology and University ofOslo studied solar collectors of various types being integrated into the building.