4 resultados para Energy and environment
em Dalarna University College Electronic Archive
Resumo:
This thesis consists of a summary and four self-contained papers. Paper [I] Following the 1987 report by The World Commission on Environment and Development, the genuine saving has come to play a key role in the context of sustainable development, and the World Bank regularly publishes numbers for genuine saving on a national basis. However, these numbers are typically calculated as if the tax system is non-distortionary. This paper presents an analogue to genuine saving in a second best economy, where the government raises revenue by means of distortionary taxation. We show how the social cost of public debt, which depends on the marginal excess burden, ought to be reflected in the genuine saving. We also illustrate by presenting calculations for Greece, Japan, Portugal, U.K., U.S. and OECD average, showing that the numbers published by the World Bank are likely to be biased and may even give incorrect information as to whether the economy is locally sustainable. Paper [II] This paper examines the relationships among per capita CO2 emissions, per capita GDP and international trade based on panel data spanning the period 1960-2008 for 150 countries. A distinction is also made between OECD and Non-OECD countries to capture the differences of this relationship between developed and developing economies. We apply panel unit root and cointegration tests, and estimate a panel error correction model. The results from the error correction model suggest that there are long-term relationships between the variables for the whole sample and for Non-OECD countries. Finally, Granger causality tests show that there is bi-directional short-term causality between per capita GDP and international trade for the whole sample and between per capita GDP and CO2 emissions for OECD countries. Paper [III] Fundamental questions in economics are why some regions are richer than others, why their growth rates differ, whether their growth rates tend to converge, and what key factors contribute to explain economic growth. This paper deals with the average income growth, net migration, and changes in unemployment rates at the municipal level in Sweden. The aim is to explore in depth the effects of possible underlying determinants with a particular focus on local policy variables. The analysis is based on a three-equation model. Our results show, among other things, that increases in the local public expenditure and income taxe rate have negative effects on subsequent income income growth. In addition, the results show conditional convergence, i.e. that the average income among the municipal residents tends to grow more rapidly in relatively poor local jurisdictions than in initially “richer” jurisdictions, conditional on the other explanatory variables. Paper [IV] This paper explores the relationship between income growth and income inequality using data at the municipal level in Sweden for the period 1992-2007. We estimate a fixed effects panel data growth model, where the within-municipality income inequality is one of the explanatory variables. Different inequality measures (Gini coefficient, top income shares, and measures of inequality in the lower and upper part of the income distribution) are examined. We find a positive and significant relationship between income growth and income inequality measured as the Gini coefficient and top income shares, respectively. In addition, while inequality in the upper part of the income distribution is positively associated with the income growth rate, inequality in the lower part of the income distribution seems to be negatively related to the income growth. Our findings also suggest that increased income inequality enhances growth more in municipalities with a high level of average income than in municipalities with a low level of average income.
Resumo:
Energy efficiency and renewable energy use are two main priorities leading to industrial sustainability nowadays according to European Steel Technology Platform (ESTP). Modernization efforts can be done by industries to improve energy consumptions of the production lines. These days, steel making industrial applications are energy and emission intensive. It was estimated that over the past years, energy consumption and corresponding CO2 generation has increased steadily reaching approximately 338.15 parts per million in august 2010 [1]. These kinds of facts and statistics have introduced a lot of room for improvement in energy efficiency for industrial applications through modernization and use of renewable energy sources such as solar Photovoltaic Systems (PV).The purpose of this thesis work is to make a preliminary design and simulation of the solar photovoltaic system which would attempt to cover the energy demand of the initial part of the pickling line hydraulic system at the SSAB steel plant. For this purpose, the energy consumptions of this hydraulic system would be studied and evaluated and a general analysis of the hydraulic and control components performance would be done which would yield a proper set of guidelines contributing towards future energy savings. The results of the energy efficiency analysis showed that the initial part of the pickling line hydraulic system worked with a low efficiency of 3.3%. Results of general analysis showed that hydraulic accumulators of 650 liter size should be used by the initial part pickling line system in combination with a one pump delivery of 100 l/min. Based on this, one PV system can deliver energy to an AC motor-pump set covering 17.6% of total energy and another PV system can supply a DC hydraulic pump substituting 26.7% of the demand. The first system used 290 m2 area of the roof and was sized as 40 kWp, the second used 109 m2 and was sized as 15.2 kWp. It was concluded that the reason for the low efficiency was the oversized design of the system. Incremental modernization efforts could help to improve the hydraulic system energy efficiency and make the design of the solar photovoltaic system realistically possible. Two types of PV systems where analyzed in the thesis work. A method was found calculating the load simulation sequence based on the energy efficiency studies to help in the PV system simulations. Hydraulic accumulators integrated into the pickling line worked as energy storage when being charged by the PV system as well.
Resumo:
The expression 'global climate change' no longer designates merely a discourse on possible future risks; today it us used as a shorthand for specific ongoing events that are having a serious impact on the lives of people around the world. In the light of this change and consequent efforts to limit carbon dioxide emissions, contributions from social scientists are increasingly in demand within the study of energy use. My concern here is not whether intervention is a proper role for anthropologists, but rather how we may position ourselves within energy- and climate-related research.
Resumo:
The gradual changes in the world development have brought energy issues back into high profile. An ongoing challenge for countries around the world is to balance the development gains against its effects on the environment. The energy management is the key factor of any sustainable development program. All the aspects of development in agriculture, power generation, social welfare and industry in Iran are crucially related to the energy and its revenue. Forecasting end-use natural gas consumption is an important Factor for efficient system operation and a basis for planning decisions. In this thesis, particle swarm optimization (PSO) used to forecast long run natural gas consumption in Iran. Gas consumption data in Iran for the previous 34 years is used to predict the consumption for the coming years. Four linear and nonlinear models proposed and six factors such as Gross Domestic Product (GDP), Population, National Income (NI), Temperature, Consumer Price Index (CPI) and yearly Natural Gas (NG) demand investigated.