4 resultados para Emergency clothing supply.
em Dalarna University College Electronic Archive
Resumo:
The aim of this study was to investigate electricity supply solutions for an educationalcenter that is being built in Chonyonyo Tanzania. Off-grid power generation solutions andfurther optimization possibilities were studied for the case.The study was done for Engineers Without Borders in Sweden. Who are working withMavuno Project on the educational center. The school is set to start operating in year 2015with 40 girl students in the beginning. The educational center will help to improve genderequality by offering high quality education in a safe environment for girls in rural area.It is important for the system to be economically and environmentally sustainable. Thearea has great potential for photovoltaic power generation. Thus PV was considered as theprimary power generation and a diesel generator as a reliable backup. The system sizeoptimization was done with HOMER. For the simulations HOMER required componentdata, weather data and load data. Common components were chose with standardproperties, the loads were based on load estimations from year 2011 and the weather datawas acquired from NASA database. The system size optimization result for this base casewas a system with 26 kW PW; 5.5 kW diesel generator, 15 kW converter and 112 T-105batteries. The initial cost of the system was 55 875 €, the total net present cost 92 121 €and the levelized cost of electricity 0.264 €/kWh.In addition three optimization possibilities were studied. First it was studied how thesystem should be designed and how it would affect the system size to have night loads(security lights) use DC and could the system then be extended in blocks. As a result it wasfound out that the system size could be decreased as the inverter losses would be avoided.Also the system extension in blocks was found to be possible. The second study was aboutinverter stacking where multiple inverters can work as one unit. This type of connectionallows only the required number of inverters to run while shutting down the excess ones.This would allow the converter-unit to run with higher efficiency and lower powerconsumption could be achieved. In future with higher loads the system could be easilyextendable by connecting more inverters either in parallel or series depending on what isneeded. Multiple inverters would also offer higher reliability than using one centralizedinverter. The third study examined how the choice of location for a centralized powergeneration affects the cable sizing for the system. As a result it was found that centralizedpower generation should be located close to high loads in order to avoid long runs of thickcables. Future loads should also be considered when choosing the location. For theeducational center the potential locations for centralized power generation were found outto be close to the school buildings and close to the dormitories.
Resumo:
The Survivability of Swedish Emergency Management Related Research Centers and Academic Programs: A Preliminary Sociology of Science Analysis Despite being a relatively safe nation, Sweden has four different universities supporting four emergency management research centers and an equal and growing number of academic programs. In this paper, I discuss how these centers and programs survive within the current organizational environment. The sociology of science or the sociology of scientific knowledge perspectives should provide a theoretical guide. Yet, scholars of these perspectives have produced no research on these related topics. Thus, the population ecology model and the notion of organizational niche provide my theoretical foundation. My data come from 26 interviews from those four institutions, the gathering of documents, and observations. I found that each institution has found its own niche with little or no competition – with one exception. Three of the universities do have an international focus. Yet, their foci have minimal overlap. Finally, I suggest that key aspects of Swedish culture, including safety, and a need aid to the poor, help explain the extensive funding these centers and programs receive to survive.
Resumo:
Emergency department (ED) triage is used to identify patients' level of urgency and treat them based on their triage level. The global advancement of triage scales in the past two decades has generated considerable research on the validity and reliability of these scales. This systematic review aims to investigate the scientific evidence for published ED triage scales. The following questions are addressed: 1. Does assessment of individual vital signs or chief complaints affect mortality during the hospital stay or within 30 days after arrival at the ED? 2. What is the level of agreement between clinicians' triage decisions compared to each other or to a gold standard for each scale (reliability)? 3. How valid is each triage scale in predicting hospitalization and hospital mortality? A systematic search of the international literature published from 1966 through March 31, 2009 explored the British Nursing Index, Business Source Premier, CINAHL, Cochrane Library, EMBASE, and PubMed. Inclusion was limited to controlled studies of adult patients (≥15 years) visiting EDs for somatic reasons. Outcome variables were death in ED or hospital and need for hospitalization (validity). Methodological quality and clinical relevance of each study were rated as high, medium, or low. The results from the studies that met the inclusion criteria and quality standards were synthesized applying the internationally developed GRADE system. Each conclusion was then assessed as having strong, moderately strong, limited, or insufficient scientific evidence. If studies were not available, this was also noted. We found ED triage scales to be supported, at best, by limited and often insufficient evidence. The ability of the individual vital signs included in the different scales to predict outcome is seldom, if at all, studied in the ED setting. The scientific evidence to assess interrater agreement (reliability) was limited for one triage scale and insufficient or lacking for all other scales. Two of the scales yielded limited scientific evidence, and one scale yielded insufficient evidence, on which to assess the risk of early death or hospitalization in patients assigned to the two lowest triage levels on a 5-level scale (validity).
A systematic review of triage-related interventions to improve patient flow in emergency departments
Resumo:
Background Overcrowding in emergency departments is a worldwide problem. A systematic literature review was undertaken to scientifically explore which interventions improve patient flow in emergency departments. Methods A systematic literature search for flow processes in emergency departments was followed by assessment of relevance and methodological quality of each individual study fulfilling the inclusion criteria. Studies were excluded if they did not present data on waiting time, length of stay, patients leaving the emergency department without being seen or other flow parameters based on a nonselected material of patients. Only studies with a control group, either in a randomized controlled trial or in an observational study with historical controls, were included. For each intervention, the level of scientific evidence was rated according to the GRADE system, launched by a WHO-supported working group. Results The interventions were grouped into streaming, fast track, team triage, point-of-care testing (performing laboratory analysis in the emergency department), and nurse-requested x-ray. Thirty-three studies, including over 800,000 patients in total, were included. Scientific evidence on the effect of fast track on waiting time, length of stay, and left without being seen was moderately strong. The effect of team triage on left without being seen was relatively strong, but the evidence for all other interventions was limited or insufficient. Conclusions Introducing fast track for patients with less severe symptoms results in shorter waiting time, shorter length of stay, and fewer patients leaving without being seen. Team triage, with a physician in the team, will probably result in shorter waiting time and shorter length of stay and most likely in fewer patients leaving without being seen. There is only limited scientific evidence that streaming of patients into different tracks, performing laboratory analysis in the emergency department or having nurses to request certain x-rays results in shorter waiting time and length of stay.