6 resultados para Education, Higher - Computer network resources

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, it has been observed that software clones and plagiarism are becoming an increased threat for one?s creativity. Clones are the results of copying and using other?s work. According to the Merriam – Webster dictionary, “A clone is one that appears to be a copy of an original form”. It is synonym to duplicate. Clones lead to redundancy of codes, but not all redundant code is a clone.On basis of this background knowledge ,in order to safeguard one?s idea and to avoid intentional code duplication for pretending other?s work as if their owns, software clone detection should be emphasized more. The objective of this paper is to review the methods for clone detection and to apply those methods for finding the extent of plagiarism occurrence among the Swedish Universities in Master level computer science department and to analyze the results.The rest part of the paper, discuss about software plagiarism detection which employs data analysis technique and then statistical analysis of the results.Plagiarism is an act of stealing and passing off the idea?s and words of another person?s as one?s own. Using data analysis technique, samples(Master level computer Science thesis report) were taken from various Swedish universities and processed in Ephorus anti plagiarism software detection. Ephorus gives the percentage of plagiarism for each thesis document, from this results statistical analysis were carried out using Minitab Software.The results gives a very low percentage of Plagiarism extent among the Swedish universities, which concludes that Plagiarism is not a threat to Sweden?s standard of education in computer science.This paper is based on data analysis, intelligence techniques, EPHORUS software plagiarism detection tool and MINITAB statistical software analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning from anywhere anytime is a contemporary phenomenon in the field of education that is thought to be flexible, time and cost saving. The phenomenon is evident in the way computer technology mediates knowledge processes among learners. Computer technology is however, in some instances, faulted. There are studies that highlight drawbacks of computer technology use in learning. In this study we aimed at conducting a SWOT analysis on ubiquitous computing and computer-mediated social interaction and their affect on education. Students and teachers were interviewed on the mentioned concepts using focus group interviews. Our contribution in this study is, identifying what teachers and students perceive to be the strength, weaknesses, opportunities and threats of ubiquitous computing and computer-mediated social interaction in education. We also relate the findings with literature and present a common understanding on the SWOT of these concepts. Results show positive perceptions. Respondents revealed that ubiquitous computing and computer-mediated social interaction are important in their education due to advantages such as flexibility, efficiency in terms of cost and time, ability to acquire computer skills. Nevertheless disadvantages where also mentioned for example health effects, privacy and security issues, noise in the learning environment, to mention but a few. This paper gives suggestions on how to overcome threats mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IPTV is now offered by several operators in Europe, US and Asia using broadcast video over private IP networks that are isolated from Internet. IPTV services rely ontransmission of live (real-time) video and/or stored video. Video on Demand (VoD)and Time-shifted TV are implemented by IP unicast and Broadcast TV (BTV) and Near video on demand are implemented by IP multicast. IPTV services require QoS guarantees and can tolerate no more than 10-6 packet loss probability, 200 ms delay, and 50 ms jitter. Low delay is essential for satisfactory trick mode performance(pause, resume,fast forward) for VoD, and fast channel change time for BTV. Internet Traffic Engineering (TE) is defined in RFC 3272 and involves both capacity management and traffic management. Capacity management includes capacityplanning, routing control, and resource management. Traffic management includes (1)nodal traffic control functions such as traffic conditioning, queue management, scheduling, and (2) other functions that regulate traffic flow through the network orthat arbitrate access to network resources. An IPTV network architecture includes multiple networks (core network, metronetwork, access network and home network) that connects devices (super head-end, video hub office, video serving office, home gateway, set-top box). Each IP router in the core and metro networks implements some queueing and packet scheduling mechanism at the output link controller. Popular schedulers in IP networks include Priority Queueing (PQ), Class-Based Weighted Fair Queueing (CBWFQ), and Low Latency Queueing (LLQ) which combines PQ and CBWFQ.The thesis analyzes several Packet Scheduling algorithms that can optimize the tradeoff between system capacity and end user performance for the traffic classes. Before in the simulator FIFO,PQ,GPS queueing methods were implemented inside. This thesis aims to implement the LLQ scheduler inside the simulator and to evaluate the performance of these packet schedulers. The simulator is provided by ErnstNordström and Simulator was built in Visual C++ 2008 environmentand tested and analyzed in MatLab 7.0 under windows VISTA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis work concerns about the Performance evolution of peer to peer networks, where we used different distribution technique’s of peer distribution like Weibull, Lognormal and Pareto distribution process. Then we used a network simulator to evaluate the performance of these three distribution techniques.During the last decade the Internet has expanded into a world-wide network connecting millions of hosts and users and providing services for everyone. Many emerging applications are bandwidth-intensive in their nature; the size of downloaded files including music and videos can be huge, from ten megabits to many gigabits. The efficient use of network resources is thus crucial for the survivability of the Internet. Traffic engineering (TE) covers a range of mechanisms for optimizing operational networks from the traffic perspective. The time scale in traffic engineering varies from the short-term network control to network planning over a longer time period.Here in this thesis work we considered the peer distribution technique in-order to minimise the peer arrival and service process with three different techniques, where we calculated the congestion parameters like blocking time for each peer before entering into the service process, waiting time for a peers while the other peer has been served in the service block and the delay time for each peer. Then calculated the average of each process and graphs have been plotted using Matlab to analyse the results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.