13 resultados para ELF-97R
em Dalarna University College Electronic Archive
Resumo:
Anneberg är ett område i Danderyds kommun där det skall beredas plats för ett nytt bostadsområde. Området skall bebyggas med flerbostadshus, gruppbostäder och ett sjukhem. Denna förstudie beskriver översiktligt 3 systemförslag som kan användas för uppvärmning av husen i bostadsområdet Anneberg. Målsättningen är att presentera uppvärmningssystem som visar hur solenergi kan användas för att öka värmepumpsystemens värmefaktor.Systemen modellerades i TRNSYS och systemfunktionen samt energiflöden simulerades. Simulerade prestanda för tre olika typer av uppvärmningssystem redovisas. System A är ett vanligt värmepumpsystem med borrhål och värmepump placerad i ett flerfamiljshus av typ 3. System B liknar system A, men har kompletterats med en glasad solfångare för varmvattenberedning. System C är en lösning som kan tillämpas för större byggnader eller för ett område med flera byggnader. Systemet har ett gemensamt värmelager och ett kulvertsystem som förbinder byggnaderna med värmelagret. I varje ansluten byggnad installeras sedan en värmepump och en oglasad solfångare.Simuleringsresultatet redovisas som en värmefaktor för systemets fem första driftår. System A får en värmefaktor på mellan 2,3 och 2,7 för de första 5 driftåren. System B får en värmefaktor på mellan 3,4 och 3,7 och system C får en värmefaktor på mellan 4,0 och 4,5. Studien visar att det går att öka värmefaktorn på en värmepumpanläggning från ca 2,5 upp till 4 eller 4,5 genom att komplettera anläggningen med solfångare och värmelager. Detta innebär att elförbrukningen minskar från att vara ca 40 % av värmebehovet ned till under 25 % av värmebehovet. Det bör således finnas en potential för att komplettera värmepumpanläggningar med solvärme. Vilket utförande som kan bli ekonomiskt intressant kan inte bedömas i denna förstudie. I förstudien visas enbart resultatet för tre enstaka systemutföranden. Inga parametervariationer (tex solfångaryta, antal borrhål och avstånd mellan borrhålen) är utförda. En sådan systemoptimering bör göras med förstudien som utgångsläge.
Resumo:
Följande sammanfattar erfarenheterna inom projektet:- Besparing av primärenergi är väldigt beroende av ett fåtal faktorer där primärenergi faktor för generering av el till nätet är avgörande. I projektet använde man termen ”non-renewable primary energy” där förnybara källor som bioenergi och även sopförbränning har väldigt låga värden. Om man använder den europeiska mixen för elproduktion ger enbartkraftvärme nästan alltid besparing av primär energi. Det samma gäller system där man använder förnybar energi eller sopförbränning. För system med trigenerering som använder fossila bränslen måste man ha både hög andel elproduktion från kraftvärmeaggregatet och relativt hög COP för den värmedrivna kylmaskinen om man ska få en besparing av primärenergi.- Systemen är komplexa och man har lärt sig mycket inom projektet. Dock har man inte kommit så långt som standard systempaket.- Elförbrukning är oftast högre än förväntat och i verklighet högre än specificerat.- Värmesänkan i systemet är en nyckelkomponent som är kritiskt för bra systemprestanda. Mer FoU krävs för att få fram komponenter som lämpar sig väl till sådana system (och som skulle också gynna andra system).- Mätning av systemet med tillhörande analys har behövts för att förbättra systemprestanda, vilket är kopplat till att system är komplexa och att det inte fanns en grundläggande kompetens i början av projektet hos alla partners.- Lovande nischmarknader har identifierats men de kräver förmodligen paketlösningar som inte finns på marknaden än.- Man ska enbart täcka baslasten med trigenereringssystem.- Koppling med fjärrvärme kan fungera bra men leverantören måste acceptera relativt höga returtemperaturer.
Resumo:
Background In order to facilitate the collaborative design, system dynamics (SD) with a group modelling approach was used in the early stages of planning a new stroke unit. During six workshops a SD model was created in a multiprofessional group. Aim To explore to which extent and how the use of system dynamics contributed to the collaborative design process. Method A case study was conducted using several data sources. Results SD supported a collaborative design, by facilitating an explicit description of stroke care process, a dialogue and a joint understanding. The construction of the model obliged the group to conceptualise the stroke care and experimentation with the model gave the opportunity to reflect on care. Conclusion SD facilitated the collaborative design process and should be integrated in the early stages of the design process as a quality improvement tool.
Resumo:
Aim: The aim of this study was to explore nurses' perceptions of climate and environmental issues and examine how nurses perceive their role in contributing to the process of sustainable development. Background: Climate change and its implications for human health represent an increasingly important issue for the healthcare sector. According to the International Council of Nurses Code of Ethics, nurses have a responsibility to be involved and support climate change mitigation and adaptation to protect human health. Design: This is a descriptive, explorative qualitative study. Methods: Nurses (n=18) were recruited from hospitals, primary care and emergency medical services; eight participated in semi-structured, in-depth individual interviews and 10 participated in two focus groups. Data were collected from April-October 2013 in Sweden; interviews were transcribed verbatim and analysed using content analysis. Results: Two main themes were identified from the interviews: (i) an incongruence between climate and environmental issues and nurses' daily work; and (ii) public health work is regarded as a health co-benefit of climate change mitigation. While being green is not the primary task in a lifesaving, hectic and economically challenging context, nurses' perceived their profession as entailing responsibility, opportunities and a sense of individual commitment to influence the environment in a positive direction. Conclusions: This study argues there is a need for increased awareness of issues and methods that are crucial for the healthcare sector to respond to climate change. Efforts to develop interventions should explore how nurses should be able to contribute to the healthcare sector's preparedness for and contributions to sustainable development.
Resumo:
Background There is emerging evidence that the physical environment is important for health, quality of life and care, but there is a lack of valid instruments to assess health care environments. The Sheffield Care Environment Assessment Matrix (SCEAM), developed in the United Kingdom, provides a comprehensive assessment of the physical environment of residential care facilities for older people. This paper reports on the translation and adaptation of SCEAM for use in Swedish residential care facilities for older people, including information on its validity and reliability. Methods SCEAM was translated into Swedish and back-translated into English, and assessed for its relevance by experts using content validity index (CVI) together with qualitative data. After modification, the validity assessments were repeated and followed by test-retest and inter-rater reliability tests in six units within a Swedish residential care facility that varied in terms of their environmental characteristics. Results Translation and back translation identified linguistic and semantic related issues. The results of the first content validity analysis showed that more than one third of the items had item-CVI (I-CVI) values less than the critical value of 0.78. After modifying the instrument, the second content validation analysis resulted in I-CVI scores above 0.78, the suggested criteria for excellent content validity. Test-retest reliability showed high stability (96% and 95% for two independent raters respectively), and inter-rater reliability demonstrated high levels of agreement (95% and 94% on two separate rating occasions). Kappa values were very good for test-retest (κ= 0.903 and 0.869) and inter-rater reliability (κ= 0.851 and 0.832). Conclusions Adapting an instrument to a domestic context is a complex and time-consuming process, requiring an understanding of the culture where the instrument was developed and where it is to be used. A team, including the instrument’s developers, translators, and researchers is necessary to ensure a valid translation and adaption. This study showed preliminary validity and reliability evidence for the Swedish version (S-SCEAM) when used in a Swedish context. Further, we believe that the S-SCEAM has improved compared to the original instrument and suggest that it can be used as a foundation for future developments of the SCEAM model.
Resumo:
Background Successful implementation of new methods and models of healthcare to achieve better patient outcomes and safe, person-centered care is dependent on the physical environment of the healthcare architecture in which the healthcare is provided. Thus, decisions concerning healthcare architecture are critical because it affects people and work processes for many years and requires a long-term financial commitment from society. In this paper, we describe and suggest several strategies (critical factors) to promote shared-decision making when planning and designing new healthcare environments. Discussion This paper discusses challenges and hindrances observed in the literature and from the authors extensive experiences in the field of planning and designing healthcare environments. An overview is presented of the challenges and new approaches for a process that involves the mutual exchange of knowledge among various stakeholders. Additionally, design approaches that balance the influence of specific and local requirements with general knowledge and evidence that should be encouraged are discussed. Summary We suggest a shared-decision making and collaborative planning and design process between representatives from healthcare, construction sector and architecture based on evidence and end-users’ perspectives. If carefully and systematically applied, this approach will support and develop a framework for creating high quality healthcare environments.
Resumo:
Aim. The aim of this study was to describe, explore and explain the concept of sustainability in nursing. Background. Although researchers in nursing and medicine have emphasised the issue of sustainability and health, the concept of sustainability in nursing is undefined and poorly researched. A need exists for theoretical and empirical studies of sustainability in nursing. Design. Concept analysis as developed by Walker and Avant. Method. Data were derived from dictionaries, international healthcare organisations and literature searches in the CINAHL and MEDLINE databases. Inclusive years for the search ranged from 1990 to 2012. A total of fourteen articles were found that referred to sustainability in nursing. Results. Sustainability in nursing involves six defining attributes: ecology, environment, future, globalism, holism and maintenance. Antecedents of sustainability require climate change, environmental impact and awareness, confidence in the future, responsibility and a willingness to change. Consequences of sustainability in nursing include education in the areas of ecology, environment and sustainable development as well as sustainability as a part of nursing academic programs and in the description of the academic subject of nursing. Sustainability should also be part of national and international healthcare organisations. The concept was clarified herein by giving it a definition. Conclusion. Sustainability in nursing was explored and found to contribute to sustainable development, with the ultimate goal of maintaining an environment that does not harm current and future generations' opportunities for good health. This concept analysis provides recommendations for the healthcare sector to incorporate sustainability and provides recommendations for future research.
Resumo:
Current research shows a relationship between healthcare architecture and patient-related Outcomes. The planning and designing of new healthcare environments is a complex process; the needs of the various end-users of the environment must be considered, including the patients, the patients’ significant others, and the staff. The aim of this study was to explore the experiences of healthcare professionals participating in group modelling utilizing system dynamics in the pre-design phase of new healthcare environments. We engaged healthcare professionals in a series of workshops using system dynamics to discuss the planning of healthcare environments in the beginning of a construction, and then interviewed them about their experience. An explorative and qualitative design was used to describe participants’ experiences of participating in the group modelling projects. Participants (n=20) were recruited from a larger intervention study using group modeling and system dynamics in planning and designing projects. The interviews were analysed by qualitative content analysis. Two themes were formed, representing the experiences in the group modeling process: ‘Partaking in the G-M created knowledge and empowerment’and ‘Partaking in the G-M was different from what was expected and required time and skills’. The method can support participants in design teams to focus more on their healthcare organization, their care activities and their aims rather than focusing on detailed layout solutions. This clarification is important when decisions about the design are discussed and prepared and will most likely lead to greater readiness for future building process.
Resumo:
Aims. To validate the Swedish version of the Sheffield Care Environment Assessment Matrix (S-SCEAM). The instrument’s items measure environmental elements important for supporting the needs of older people, and conceptualized within eight domains. Methods. Item relevance was assessed by a group of experts and measured using content validity index (CVI). Test-retest and inter-rater reliability tests were performed. The domain structure was assessed by the inter-rater agreement of a second group of experts, and measured using Fleiss kappa. Results. All items attained a CVI above 0.78, the suggested criteria for excellent content validity. Test-retest reliability showed high stability (96% and 95% for two independent raters respectively), and inter-rater reliability demonstrated high levels of agreement (95% and 94% on two separate rating occasions). Kappa values were very good for test-retest (κ = 0.903 and 0.869) and inter-rater reliability (κ = 0.851 and 0.832). Domain structure was good, Fleiss’ kappa was 0.63 (range 0.45 to 0.75). Conclusion. The S-SCEAM of 210 items and eight domains showed good content validity and construct validity. The instrument is suggested for use in measuring of the quality of the physical environment in residential care facilities for older persons.
Resumo:
Several studies have found that fatigue is one of the most commonly reported symptoms after stroke and the most difficult to cope with. The present study aimed to investigate the presence and severity of self-reported fatigue six years after stroke onset and associated factors. The cohort "Life After Stroke Phase I" (n = 349 persons) was invited at six years to report fatigue (Fatigue Severity Scale 7-item version), perceived impact of stroke and global recovery after stroke (Stroke Impact Scale), anxiety and depression (Hospital Anxiety and Depression Scale), life satisfaction (Life Satisfaction Checklist) and participation in everyday social activities (Frenchay Activities Index). At six years 37% of the 102 participants in this cross-sectional study reported fatigue. The results showed that in nearly all SIS domains the odds for post-stroke fatigue were higher in persons with a higher perceived impact. Furthermore, the odds for post-stroke fatigue were higher in those who had experienced a moderate/severe stroke and had signs of depression and anxiety. Fatigue is still present in one-third of persons as long as six years after stroke onset and is perceived to hinder many aspects of functioning in everyday life. There is an urgent need to develop and evaluate interventions to reduce fatigue.