2 resultados para Delay-Time

em Dalarna University College Electronic Archive


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis work concerns about the Performance evolution of peer to peer networks, where we used different distribution technique’s of peer distribution like Weibull, Lognormal and Pareto distribution process. Then we used a network simulator to evaluate the performance of these three distribution techniques.During the last decade the Internet has expanded into a world-wide network connecting millions of hosts and users and providing services for everyone. Many emerging applications are bandwidth-intensive in their nature; the size of downloaded files including music and videos can be huge, from ten megabits to many gigabits. The efficient use of network resources is thus crucial for the survivability of the Internet. Traffic engineering (TE) covers a range of mechanisms for optimizing operational networks from the traffic perspective. The time scale in traffic engineering varies from the short-term network control to network planning over a longer time period.Here in this thesis work we considered the peer distribution technique in-order to minimise the peer arrival and service process with three different techniques, where we calculated the congestion parameters like blocking time for each peer before entering into the service process, waiting time for a peers while the other peer has been served in the service block and the delay time for each peer. Then calculated the average of each process and graphs have been plotted using Matlab to analyse the results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.