7 resultados para Decision support system

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work is to develop a web based decision support system, based onfuzzy logic, to assess the motor state of Parkinson patients on their performance in onscreenmotor tests in a test battery on a hand computer. A set of well defined rules, basedon an expert’s knowledge, were made to diagnose the current state of the patient. At theend of a period, an overall score is calculated which represents the overall state of thepatient during the period. Acceptability of the rules is based on the absolute differencebetween patient’s own assessment of his condition and the diagnosed state. Anyinconsistency can be tracked by highlighted as an alert in the system. Graphicalpresentation of data aims at enhanced analysis of patient’s state and performancemonitoring by the clinic staff. In general, the system is beneficial for the clinic staff,patients, project managers and researchers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A decision support system (DSS) was implemented based on a fuzzy logic inference system (FIS) to provide assistance in dose alteration of Duodopa infusion in patients with advanced Parkinson’s disease, using data from motor state assessments and dosage. Three-tier architecture with an object oriented approach was used. The DSS has a web enabled graphical user interface that presents alerts indicating non optimal dosage and states, new recommendations, namely typical advice with typical dose and statistical measurements. One data set was used for design and tuning of the FIS and another data set was used for evaluating performance compared with actual given dose. Overall goodness-of-fit for the new patients (design data) was 0.65 and for the ongoing patients (evaluation data) 0.98. User evaluation is now ongoing. The system could work as an assistant to clinical staff for Duodopa treatment in advanced Parkinson’s disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Shared decision-making (SDM) is an emergent research topic in the field of mental health care and is considered to be a central component of a recovery-oriented system. Despite the evidence suggesting the benefits of this change in the power relationship between users and practitioners, the method has not been widely implemented in clinical practice. OBJECTIVE: The objective of this study was to investigate decisional and information needs among users with mental illness as a prerequisite for the development of a decision support tool aimed at supporting SDM in community-based mental health services in Sweden. METHODS: Three semi-structured focus group interviews were conducted with 22 adult users with mental illness. The transcribed interviews were analyzed using a directed content analysis. This method was used to develop an in-depth understanding of the decisional process as well as to validate and conceptually extend Elwyn et al.'s model of SDM. RESULTS: The model Elwyn et al. have created for SDM in somatic care fits well for mental health services, both in terms of process and content. However, the results also suggest an extension of the model because decisions related to mental illness are often complex and involve a number of life domains. Issues related to social context and individual recovery point to the need for a preparation phase focused on establishing cooperation and mutual understanding as well as a clear follow-up phase that allows for feedback and adjustments to the decision-making process. CONCLUSIONS AND IMPLICATIONS FOR PRACTICE: The current study contributes to a deeper understanding of decisional and information needs among users of community-based mental health services that may reduce barriers to participation in decision-making. The results also shed light on attitudinal, relationship-based, and cognitive factors that are important to consider in adapting SDM in the mental health system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: A test battery consisting of self-assessments and motor tests (tapping and spiral drawing) was developed for a hand computer with touch screen in a telemedicine setting. Objectives: To develop and evaluate a web-based system that delivers decision support information to the treating clinical staff for assessing PD symptoms in their patients based on the test battery data. Methods: The test battery is currently being used in a clinical trial (DAPHNE, EudraCT No. 2005-002654-21) by sixty five patients with advanced Parkinson’s disease (PD) on 9991 test occasions (four tests per day during in all 362 week-long test periods) at nine clinics around Sweden. Test results are sent continuously from the hand unit over a mobile net to a central computer and processed with statistical methods. They are summarized into scores for different dimensions of the symptom state and an ‘overall test score’ reflecting the overall condition of the patient during a test period. The information in the web application is organized and presented graphically in a way that the general overview of the patient performance per test period is emphasized. Focus is on the overall test score, symptom dimensions and daily summaries. In a recent preliminary user evaluation, the web application was demonstrated to the fifteen study nurses who had used the test battery in the clinical trial. At least one patient per clinic was shown. Results: In general, the responses from nurses were positive. They claimed that the test results shown in the system were consistent with their own clinical observations. They could follow complications, changes and trends within their patients. Discussion: In conclusion, the system is able to summarise the various time series of motor test results and self-assessments during test periods and present them in a useful manner. Its main contribution is a novel and reliable way to capture and easily access symptom information from patients’ home environment. The convenient access to current symptom profile as well as symptom history provides a basis for individualized evaluation and adjustment of treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective: To investigate whether advanced visualizations of spirography-based objective measures are useful in differentiating drug-related motor dysfunctions between Off and dyskinesia in Parkinson’s disease (PD). Background: During the course of a 3 year longitudinal clinical study, in total 65 patients (43 males and 22 females with mean age of 65) with advanced PD and 10 healthy elderly (HE) subjects (5 males and 5 females with mean age of 61) were assessed. Both patients and HE subjects performed repeated and time-stamped assessments of their objective health indicators using a test battery implemented on a telemetry touch screen handheld computer, in their home environment settings. Among other tasks, the subjects were asked to trace a pre-drawn Archimedes spiral using the dominant hand and repeat the test three times per test occasion. Methods: A web-based framework was developed to enable a visual exploration of relevant spirography-based kinematic features by clinicians so they can in turn evaluate the motor states of the patients i.e. Off and dyskinesia. The system uses different visualization techniques such as time series plots, animation, and interaction and organizes them into different views to aid clinicians in measuring spatial and time-dependent irregularities that could be associated with the motor states. Along with the animation view, the system displays two time series plots for representing drawing speed (blue line) and displacement from ideal trajectory (orange line). The views are coordinated and linked i.e. user interactions in one of the views will be reflected in other views. For instance, when the user points in one of the pixels in the spiral view, the circle size of the underlying pixel increases and a vertical line appears in the time series views to depict the corresponding position. In addition, in order to enable clinicians to observe erratic movements more clearly and thus improve the detection of irregularities, the system displays a color-map which gives an idea of the longevity of the spirography task. Figure 2 shows single randomly selected spirals drawn by a: A) patient who experienced dyskinesias, B) HE subject, and C) patient in Off state. Results: According to a domain expert (DN), the spirals drawn in the Off and dyskinesia motor states are characterized by different spatial and time features. For instance, the spiral shown in Fig. 2A was drawn by a patient who showed symptoms of dyskinesia; the drawing speed was relatively high (cf. blue-colored time series plot and the short timestamp scale in the x axis) and the spatial displacement was high (cf. orange-colored time series plot) associated with smooth deviations as a result of uncontrollable movements. The patient also exhibited low amount of hesitation which could be reflected both in the animation of the spiral as well as time series plots. In contrast, the patient who was in the Off state exhibited different kinematic features, as shown in Fig. 2C. In the case of spirals drawn by a HE subject, there was a great precision during the drawing process as well as unchanging levels of time-dependent features over the test trial, as seen in Fig. 2B. Conclusions: Visualizing spirography-based objective measures enables identification of trends and patterns of drug-related motor dysfunctions at the patient’s individual level. Dynamic access of visualized motor tests may be useful during the evaluation of drug-related complications such as under- and over-medications, providing decision support to clinicians during evaluation of treatment effects as well as improve the quality of life of patients and their caregivers. In future, we plan to evaluate the proposed approach by assessing within- and between-clinician variability in ratings in order to determine its actual usefulness and then use these ratings as target outcomes in supervised machine learning, similarly as it was previously done in the study performed by Memedi et al. (2013).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic.  The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.