6 resultados para Data analysis system
em Dalarna University College Electronic Archive
Resumo:
This paper investigates what factors affect the destination choice for Jordanian to 8 countries (Oman, Saudi Arabia, Syria, Tunisia, Yemen, Egypt, Lebanon and Bahrain) using panel data analysis. Number of outbound tourists is represented as dependent variable, which is regressed over five explanatory variables using fixed effect model. The finding of this paper is that tourists from Jordan have weak demand for outbound tourism; Jordanian decision of traveling abroad is determined by the cost of traveling to different places and choosing the cheapest alternative.
Resumo:
Market research is often conducted through conventional methods such as surveys, focus groups and interviews. But the drawbacks of these methods are that they can be costly and timeconsuming. This study develops a new method, based on a combination of standard techniques like sentiment analysis and normalisation, to conduct market research in a manner that is free and quick. The method can be used in many application-areas, but this study focuses mainly on the veganism market to identify vegan food preferences in the form of a profile. Several food words are identified, along with their distribution between positive and negative sentiments in the profile. Surprisingly, non-vegan foods such as cheese, cake, milk, pizza and chicken dominate the profile, indicating that there is a significant market for vegan-suitable alternatives for such foods. Meanwhile, vegan-suitable foods such as coconut, potato, blueberries, kale and tofu also make strong appearances in the profile. Validation is performed by using the method on Volkswagen vehicle data to identify positive and negative sentiment across five car models. Some results were found to be consistent with sales figures and expert reviews, while others were inconsistent. The reliability of the method is therefore questionable, so the results should be used with caution.
Resumo:
The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.
Resumo:
A one year data analysis for a micro PV-Wind hybrid system (0.52 kW + 1 kW), installed in Borlänge/Sweden is presented in this paper. The system performance was evaluated according the guidelines of the IEC 61724 standard. The parameters obtained allow a comparison with similar systems. The measurement data are also used to evaluate the sizing and operation of the hybrid system. In addition, the system was modelled in HOMER to study sizing options.
Resumo:
Background. Through a national policy agreement, over 167 million Euros will be invested in the Swedish National Quality Registries (NQRs) between 2012 and 2016. One of the policy agreement¿s intentions is to increase the use of NQR data for quality improvement (QI). However, the evidence is fragmented as to how the use of medical registries and the like lead to quality improvement, and little is known about non-clinical use. The aim was therefore to investigate the perspectives of Swedish politicians and administrators on quality improvement based on national registry data. Methods. Politicians and administrators from four county councils were interviewed. A qualitative content analysis guided by the Consolidated Framework for Implementation Research (CFIR) was performed. Results. The politicians and administrators perspectives on the use of NQR data for quality improvement were mainly assigned to three of the five CFIR domains. In the domain of intervention characteristics, data reliability and access in reasonable time were not considered entirely satisfactory, making it difficult for the politico-administrative leaderships to initiate, monitor, and support timely QI efforts. Still, politicians and administrators trusted the idea of using the NQRs as a base for quality improvement. In the domain of inner setting, the organizational structures were not sufficiently developed to utilize the advantages of the NQRs, and readiness for implementation appeared to be inadequate for two reasons. Firstly, the resources for data analysis and quality improvement were not considered sufficient at politico-administrative or clinical level. Secondly, deficiencies in leadership engagement at multiple levels were described and there was a lack of consensus on the politicians¿ role and level of involvement. Regarding the domain of outer setting, there was a lack of communication and cooperation between the county councils and the national NQR organizations. Conclusions. The Swedish experiences show that a government-supported national system of well-funded, well-managed, and reputable national quality registries needs favorable local politico-administrative conditions to be used for quality improvement; such conditions are not yet in place according to local politicians and administrators.
Resumo:
The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.