4 resultados para Crossing Signals.

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Voice processing in real-time is challenging. A drawback of previous work for Hypokinetic Dysarthria (HKD) recognition is the requirement of controlled settings in a laboratory environment. A personal digital assistant (PDA) has been developed for home assessment of PD patients. The PDA offers sound processing capabilities, which allow for developing a module for recognition and quantification HKD. Objective: To compose an algorithm for assessment of PD speech severity in the home environment based on a review synthesis. Methods: A two-tier review methodology is utilized. The first tier focuses on real-time problems in speech detection. In the second tier, acoustics features that are robust to medication changes in Levodopa-responsive patients are investigated for HKD recognition. Keywords such as Hypokinetic Dysarthria , and Speech recognition in real time were used in the search engines. IEEE explorer produced the most useful search hits as compared to Google Scholar, ELIN, EBRARY, PubMed and LIBRIS. Results: Vowel and consonant formants are the most relevant acoustic parameters to reflect PD medication changes. Since relevant speech segments (consonants and vowels) contains minority of speech energy, intelligibility can be improved by amplifying the voice signal using amplitude compression. Pause detection and peak to average power rate calculations for voice segmentation produce rich voice features in real time. Enhancements in voice segmentation can be done by inducing Zero-Crossing rate (ZCR). Consonants have high ZCR whereas vowels have low ZCR. Wavelet transform is found promising for voice analysis since it quantizes non-stationary voice signals over time-series using scale and translation parameters. In this way voice intelligibility in the waveforms can be analyzed in each time frame. Conclusions: This review evaluated HKD recognition algorithms to develop a tool for PD speech home-assessment using modern mobile technology. An algorithm that tackles realtime constraints in HKD recognition based on the review synthesis is proposed. We suggest that speech features may be further processed using wavelet transforms and used with a neural network for detection and quantification of speech anomalies related to PD. Based on this model, patients' speech can be automatically categorized according to UPDRS speech ratings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

De senaste årens ökade flerspråkighet i samhället gör avtryck i den svenskspråkiga romanen. Verk av författare som Jonas Hassen Khemiri och Marjaneh Bakhtiari har gjort att man i Sverige ibland har talat om ”a new literary field” (Jonsson 2012, 213). Mycket av uppmärksamheten kring verken har rört flerspråkigheten, som till viss del har förklarats av författarnas ursprung och erfarenheter av kulturer och språk som är relativt nya i Norden, ibland kallade ”invandrarspråk”. Förhållandet mellan författarnas egen språkliga och kulturella repertoar och verkens flerspråkighet har debatterats. Kritiken har riktats mot att det ofta varit författarnas etnicitet istället för deras författargärning som kommenterats (Nilsson 2010, 132) och man har förbisett att verken ofta problematiserar just kategoriseringar som ”invandrarlitteratur” (Nilsson 2010, 10). För att komma ifrån detta men ändå behålla fokus på den litterära flerspråkigheten, är en analys av verk som innehåller ”invandrarspråk”, men som är skrivna av svenskspråkiga författare utan invandrarbakgrund, intressant. Syftet med studien är följaktligen att undersöka vilken roll den litterära flerspråkigheten får i verk av en finlandssvensk och en sverigesvensk författare, som inte är självklara representanter för de språk de använder i sina verk. Frågan är i vilken omfattning och på vilket sätt de studerade verken ger uttryck för litterär flerspråkighet och vilka potentiella effekter den litterära flerspråkigheten kan ha i verken. För att ta reda på detta, har den finlandssvenska författaren Johanna Holmströms, samt den svenske författaren Jens Lapidus romaner analyserats.