5 resultados para Conical tubes

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sealed gas filled flat plate solar collectors will have stresses in the material since volume and pressure varies in the gas when the temperature changes. Several geometries were analyzed and it could be seen that it is possible reducing the stresses and improve the safety factor of the weakest point in the construction by using larger area and/or reducing the distance between glass and absorber and/or change width and height relationship so the tubes are getting longer. Further it could be shown that the safety factor won't always get improved with reinforcements. It is so because when an already strong part of the collector gets reinforced it will expose weaker parts for higher stresses. The finite element method was used for finding out the stresses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With a suitable gas filling used between cover glass and absorber in a flat plate solar collector, it is possible achieving better thermal performance at the same time as the distance betweenabsorber and glass can be reduced. Though, even if there is no vacuum inside the box, there will be potential risks for exhaustion due to stresses depending on the gas volume varies as the temperature varies. This study found out that it is possible build such a collector with less material in the absorber and the tubes and still getting better performance, without risks for exhaustion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Participation as observer at the meeting of Task 14 of IEA's Solar Heating and Cooling Projects held in Hameln, Germany has led to greater understanding of interesting developments underway in several countries. This will be of use during the development of small scale systems suitable for Swedish conditions. A summary of the work carried out by the working groups within Task 14 is given, with emphasis on the Domestic Hot Water group. Experiences of low-flow systems from several countries are related, and the conclusion is drawn that the maximum theoretical possible increase in performance of 20% has not been achieved due to poor heat exchangers and poor stratification in the storage tanks. Positive developments in connecting tubes and pumps is noted. Further participation as observer in Task 14 meetings is desired, and is looked on favourably by the members of the group. Another conclusion is that SERC should carry on with work on Swedish storage tanks, with emphasis on better stratification and heat exchangers, and possible modelling of system components. Finally a German Do-it-Vourself kit is described and judged in comparison with prefabricated models and Swedish Do-it-Yourself kits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work treats the thermal and mechanical performances of gas-filled, flat plate solar collectors in order to achieve a better performance than that of air filled collectors. The gases examined are argon, krypton and xenon which all have lower thermal conductivity than air. The absorber is formed as a tray connected to the glass. The pressure of the gas inside is near to the ambient and since the gas volume will vary as the temperature changes, there are potential risks for fatigue in the material. One heat transfer model and one mechanical model were built. The mechanical model gave stresses and information on the movements. The factors of safety were calculated from the stresses, and the movements were used as input for the heat transfer model where the thermal performance was calculated. It is shown that gas-filled, flat plate solar collectors can be designed to achieve good thermal performance at a competitive cost. The best yield is achieved with a xenon gas filling together with a normal thick absorber, where normal thick means a 0.25 mm copper absorber. However, a great deal of energy is needed to produce the xenon gas, and if this aspect is taken into account, the krypton filling is better. Good thermal performance can also be achieved using less material; a collector with a 0.1 mm thick copper absorber and the third best gas, which is argon, still gives a better operating performance than a common, commercially produced, air filled collector with a 0.25 mm absorber. When manufacturing gas-filled flat plate solar collectors, one way of decreasing the total material costs significantly, is by changing absorber material from copper to aluminium. Best yield per monetary outlay is given by a thin (0.3 mm) alu-minium absorber with an argon filling. A high factor of safety is achieved with thin absorbers, large absorber areas, rectangular constructions with long tubes and short distances between glass and absorber. The latter will also give a thin layer of gas which gives good thermal performance. The only doubtii ful construction is an argon filled collector with a normal thick (> 0.50 mm) aluminium absorber. In general, an assessment of the stresses for the proposed construction together with appropriate tests are recommended before manufacturing, since it is hard to predict the factor of safety; if one part is reinforced, some other parts can experience more stress and the factor of safety actually drops.