12 resultados para Conditional Heteroskedasticity
em Dalarna University College Electronic Archive
Resumo:
In a natural experiment, this paper studies the impact of an informal sanctioning mechanism on individuals’ voluntary contribution to a public good. Cross-country skiers’ actual cash contributions in two ski resorts, one with and one without an informal sanctioning system, are used. I find the contributing share to be higher in the informal sanctioning system (79 percent) than in the non-sanctioning system (36 percent). Previous studies in one-shot public good situations have found an increasing conditional contribution (CC) function, i.e. the relationship between expected average contributions of other group members and the individual’s own contribution. In contrast, the present results suggest that the CC-function in the non-sanctioning system is non-increasing at high perceived levels of others’ contribution. This relationship deserves further testing in lab.
Resumo:
We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB).IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth datatransmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] First, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one incontinuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be include CAC, traffic policing used for traffic control.QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator andanalytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.
Resumo:
Education, as an indispensable component of human capital, has been acknowledged to play a critical role in economic growth, which is theoretically elaborated by human capital theory and empirically confirmed by evidence from different parts of the world. The educational impact on growth is especially valuable and meaningful when it is for the sake of poverty reduction and pro-poorness of growth. The paper re-explores the precious link between human capital development and poverty reduction by investigating the causal effect of education accumulation on earnings enhancement for anti-poverty and pro-poor growth. The analysis takes the evidence from a well-known conditional cash transfer (CCT) program — Oportunidades in Mexico. Aiming at alleviating poverty and promoting a better future by investing in human capital for children and youth in poverty, this CCT program has been recognized producing significant outcomes. The study investigates a short-term impact of education on earnings of the economically disadvantaged youth, taking the data of both the program’s treated and untreated youth from urban areas in Mexico from 2002 to 2004. Two econometric techniques, i.e. difference-in-differences and difference-in-differences propensity score matching approach are applied for estimation. The empirical analysis first identifies that youth who under the program’s schooling intervention possess an advantage in educational attainment over their non-intervention peers; with this identification of education discrepancy as a prerequisite, further results then present that earnings of the education advantaged youth increase at a higher rate about 20 percent than earnings of their education disadvantaged peers over the two years. This result indicates a confirmation that education accumulation for the economically disadvantaged young has a positive impact on their earnings enhancement and thus inferring a contribution to poverty reduction and pro-poorness of growth.
Resumo:
Internet protocol TV (IPTV) is predicted to be the key technology winner in the future. Efforts to accelerate the deployment of IPTV centralized model which is combined of VHO, encoders, controller, access network and Home network. Regardless of whether the network is delivering live TV, VOD, or Time-shift TV, all content and network traffic resulting from subscriber requests must traverse the entire network from the super-headend all the way to each subscriber's Set-Top Box (STB). IPTV services require very stringent QoS guarantees When IPTV traffic shares the network resources with other traffic like data and voice, how to ensure their QoS and efficiently utilize the network resources is a key and challenging issue. For QoS measured in the network-centric terms of delay jitter, packet losses and bounds on delay. The main focus of this thesis is on the optimized bandwidth allocation and smooth data transmission. The proposed traffic model for smooth delivering video service IPTV network with its QoS performance evaluation. According to Maglaris et al [5] first, analyze the coding bit rate of a single video source. Various statistical quantities are derived from bit rate data collected with a conditional replenishment inter frame coding scheme. Two correlated Markov process models (one in discrete time and one in continuous time) are shown to fit the experimental data and are used to model the input rates of several independent sources into a statistical multiplexer. Preventive control mechanism which is to be including CAC, traffic policing used for traffic control. QoS has been evaluated of common bandwidth scheduler( FIFO) by use fluid models with Markovian queuing method and analysis the result by using simulator and analytically, Which is measured the performance of the packet loss, overflow and mean waiting time among the network users.
Resumo:
The FE ('fixed effects') estimator of technical inefficiency performs poorly when N ('number of firms') is large and T ('number of time observations') is small. We propose estimators of both the firm effects and the inefficiencies, which have small sample gains compared to the traditional FE estimator. The estimators are based on nonparametric kernel regression of unordered variables, which includes the FE estimator as a special case. In terms of global conditional MSE ('mean square error') criterions, it is proved that there are kernel estimators which are efficient to the FE estimators of firm effects and inefficiencies, in finite samples. Monte Carlo simulations supports our theoretical findings and in an empirical example it is shown how the traditional FE estimator and the proposed kernel FE estimator lead to very different conclusions about inefficiency of Indonesian rice farmers.
Resumo:
Fundamental questions in economics are why some regions are richer than others, why their economic growth rates vary, whether their growth tends to converge and the key factors that contribute to the variations. These questions have not yet been fully addressed, but changes in the local tax base are clearly influenced by the average income growth rate, net migration rate, and changes in unemployment rates. Thus, the main aim of this paper is to explore in depth the interactive effects of these factors (and local policy variables) in Swedish municipalities, by estimating a proposed three-equation system. Our main finding is that increases in local public expenditures and income taxes have negative effects on subsequent local income growth. In addition, our results support the conditional convergence hypothesis, i.e. that average income tends to grow more rapidly in relatively poor local jurisdictions than in initially “richer” jurisdictions, conditional on the other explanatory variables.
Resumo:
This thesis consists of a summary and four self-contained papers. Paper [I] Following the 1987 report by The World Commission on Environment and Development, the genuine saving has come to play a key role in the context of sustainable development, and the World Bank regularly publishes numbers for genuine saving on a national basis. However, these numbers are typically calculated as if the tax system is non-distortionary. This paper presents an analogue to genuine saving in a second best economy, where the government raises revenue by means of distortionary taxation. We show how the social cost of public debt, which depends on the marginal excess burden, ought to be reflected in the genuine saving. We also illustrate by presenting calculations for Greece, Japan, Portugal, U.K., U.S. and OECD average, showing that the numbers published by the World Bank are likely to be biased and may even give incorrect information as to whether the economy is locally sustainable. Paper [II] This paper examines the relationships among per capita CO2 emissions, per capita GDP and international trade based on panel data spanning the period 1960-2008 for 150 countries. A distinction is also made between OECD and Non-OECD countries to capture the differences of this relationship between developed and developing economies. We apply panel unit root and cointegration tests, and estimate a panel error correction model. The results from the error correction model suggest that there are long-term relationships between the variables for the whole sample and for Non-OECD countries. Finally, Granger causality tests show that there is bi-directional short-term causality between per capita GDP and international trade for the whole sample and between per capita GDP and CO2 emissions for OECD countries. Paper [III] Fundamental questions in economics are why some regions are richer than others, why their growth rates differ, whether their growth rates tend to converge, and what key factors contribute to explain economic growth. This paper deals with the average income growth, net migration, and changes in unemployment rates at the municipal level in Sweden. The aim is to explore in depth the effects of possible underlying determinants with a particular focus on local policy variables. The analysis is based on a three-equation model. Our results show, among other things, that increases in the local public expenditure and income taxe rate have negative effects on subsequent income income growth. In addition, the results show conditional convergence, i.e. that the average income among the municipal residents tends to grow more rapidly in relatively poor local jurisdictions than in initially “richer” jurisdictions, conditional on the other explanatory variables. Paper [IV] This paper explores the relationship between income growth and income inequality using data at the municipal level in Sweden for the period 1992-2007. We estimate a fixed effects panel data growth model, where the within-municipality income inequality is one of the explanatory variables. Different inequality measures (Gini coefficient, top income shares, and measures of inequality in the lower and upper part of the income distribution) are examined. We find a positive and significant relationship between income growth and income inequality measured as the Gini coefficient and top income shares, respectively. In addition, while inequality in the upper part of the income distribution is positively associated with the income growth rate, inequality in the lower part of the income distribution seems to be negatively related to the income growth. Our findings also suggest that increased income inequality enhances growth more in municipalities with a high level of average income than in municipalities with a low level of average income.
Resumo:
We present a new version of the hglm package for fittinghierarchical generalized linear models (HGLM) with spatially correlated random effects. A CAR family for conditional autoregressive random effects was implemented. Eigen decomposition of the matrix describing the spatial structure (e.g. the neighborhood matrix) was used to transform the CAR random effectsinto an independent, but heteroscedastic, gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR model.This gives a computationally efficient algorithm for moderately sized problems (e.g. n<5000).
Resumo:
This paper elaborates the routing of cable cycle through available routes in a building in order to link a set of devices, in a most reasonable way. Despite of the similarities to other NP-hard routing problems, the only goal is not only to minimize the cost (length of the cycle) but also to increase the reliability of the path (in case of a cable cut) which is assessed by a risk factor. Since there is often a trade-off between the risk and length factors, a criterion for ranking candidates and deciding the most reasonable solution is defined. A set of techniques is proposed to perform an efficient and exact search among candidates. A novel graph is introduced to reduce the search-space, and navigate the search toward feasible and desirable solutions. Moreover, admissible heuristic length estimation helps to early detection of partial cycles which lead to unreasonable solutions. The results show that the method provides solutions which are both technically and financially reasonable. Furthermore, it is proved that the proposed techniques are very efficient in reducing the computational time of the search to a reasonable amount.