2 resultados para Concentrated distribution
em Dalarna University College Electronic Archive
Resumo:
This Thesis project is a part of the research conducted in Solar industry. ABSOLICON Solar Concentrator AB has invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate distribution of density of solar radiation in the focal line of the concentrated parabolic reflectors and to measure radiation from the artificial source of light being a calibration-testing tool.On the basis of the requirements of the company’s administration and needs of designing the concentrated reflectors the operation conditions for the Sun-Walker were formulated. As the first step, the complex design of the whole system was made and division on the parts was specified. After the preliminary conducted simulation of the functions and operation conditions of the all parts were formulated.As the next steps, the detailed design of all the parts was made. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Sun-Walker were assembled and tested. The software part, which controls the Sun-Walker work and conducts measurements of solar irradiation, was created on the LabVIEW basis. To tune and test the software part, the special simulator was designed and assembled.When all parts were assembled in the complete system, the Sun-Walker was tested, calibrated and tuned.
Resumo:
When a stationary solar concentrator is designed, the spatial distribution of the available irradiation is of vital interest. An irradiation distribution based only on solar geometry will look similar at different sites. The only difference is that the distribution of the incident irradiation is shifted to lower solar altitudes when latitude is increased. However, real irradiation distribution will show strong asymmetry at high latitude sites, since the winter irradiation is reduced by absorption and scattering in the atmosphere, and by seasonal changes in the climate. The reduced winter irradiation at high latitudes implies that the available annual radiation is concentrated to a narrower angular interval. This means that the degree of concentration that is possible increases with latitude.In the paper examples of irradiation distribution from different sites in Europe from latitude 38°N to 65°N are shown. The origin of the reduced winter irradiation with increased latitude is discussed, and numerical examples on the performance of different types of stationary concentrators for different latitudes are given.