13 resultados para Color printing.
em Dalarna University College Electronic Archive
Resumo:
At the age of multi-media, portable electronic devices such as mobile phones, personal digital assistant and handheld gaming systems have increased the demand for high performance displays with low cost production. Inkjet printing color optical filters (COF) for LCD applications seem to be an interesting alternative to decrease the production costs. The advantage of inkjet printing technology is to be fast, accurate, easy to run and cheaper than other technologies. In this master thesis work, we used various disciplines such as optical microscopy, rheology, inkjet printing, profilometering and colorimetry. The specific aim of the thesis was to investigate the feasibility of using company-A pigment formulation in inkjet production of COF for active matrix LCD applications. Ideal viscosity parameters were determined from 10 to 20mPa·s for easy inkjet printing at room temperature. The red pigments used are fully dispersed into the solvent and present an excellent homogenous repartition after printing. Thickness investigations revealed that the printed COF were equal or slightly thicker than typically manufactured ones. The colorimetry investigations demonstrated color coordinates very close to the NTSC red standard. LED backlighting seems to be a valuable solution to combine with the printed COF regarding to the spectrum and color analysis. The results on this thesis will increase the understanding of inkjet printing company-A pigments to produce COF for LCD applications.
Resumo:
This thesis work has introduced process orientation at the printing company Color Print Sweden AB. The outcome ofthis work is a survey of the work flow at the prepress department. To visualise the production process at the companya comprehensive mapping of the main process, order-to-delivery, has been made. The work has detected a couple ofcritical elements in the existing process. These elements are the following: initial check of material delivered to the prepressdepartment as well as the control made of the plotter print-out, digital test print and plate. To guarantee the qualityof the prints it is very important that the work made in the prepress department is optimized. This survey can thereforebe used as a basis for continuous improvement in the processes at Color Print Sweden AB. This work has alsoresulted in a template that Color Print Sweden AB can use to design routine descriptions to ensure that specific worktasks are performed the right way by everyone and all the time.
Resumo:
In offset printing, dampening solution is used to create a good balance in the process. If too much water is transferred to the paper, the sheet can change its size between the printing units, due to water absorption, and cause a problem with the colour register. This phenomenon is usually referred to as fanout. In this degree project, an investigation was made to see if the paper dimensions changed through its way in the sheet-fed printing process. The instrument Luchs Register Measuring Systems (Lynx) was used, and a method for measuring if the paper changed its dimensions with this instrument, was developed. Paper qualities with three different grammages were used, 90, 130 and 250 gsm. This investigation showed that all paper qualities changed their size with widening in the gripper edge in the range of 10 - 70 µm and in the trailing edge the increase was 10 - 130 µm. The elongations of the papers were in the range of 10- 300 µm. The papers with lowest grammage changed more than the heavier. To see if the print had been affected of the widening and elongation, print quality parameters like relative contrast, dot gain and mottle were correlated with the Lynx data from the sheets. The group of papers that gave correlations were in 130 gsm. The sheets had visual doubling and the combined standard deviation from the Lynx marks K3, K5 and K21 correlated with dot gain. When the variations increased so did the dot gain and this indicates that the doubling was due to the widening. There was also a correlation between the standard deviation from K3 and Mottle. The sheets widened with an average of 30 µm in the gripper edge and since there probably were doubling due to widening it also affected the Mottle values. What the widening depends on is hard to tell. Since widening was so small, it could be due to water absorption, papers being ironed out or maybe the sheets have been flattened out. It probably needs a more detailed investigation to find out what causes the widening. Further investigations about how print quality is affected by the register accuracy of a printing machine should include a print form with measuring areas close to the Lynx marks. The measuring areas should contain fine hairlines, negative text printed with at least two colours and some pictures to evaluate together with standard measuring should give a good knowledge about the subject.
Resumo:
The pulp- and paper production is a very energy intensive industry sector. Both Sweden and the U.S. are major pulpandpaper producers. This report examines the energy and the CO2-emission connected with the pulp- and paperindustry for the two countries from a lifecycle perspective.New technologies make it possible to increase the electricity production in the integrated pulp- andpaper mill through black liquor gasification and a combined cycle (BLGCC). That way, the mill canproduce excess electricity, which can be sold and replace electricity produced in power plants. In thisprocess the by-products that are formed at the pulp-making process is used as fuel to produce electricity.In pulp- and paper mills today the technology for generating energy from the by-product in aTomlinson boiler is not as efficient as it could be compared to the BLGCC technology. Scenarios havebeen designed to investigate the results from using the BLGCC technique using a life cycle analysis.Two scenarios are being represented by a 1994 mill in the U.S. and a 1994 mill in Sweden.The scenariosare based on the average energy intensity of pulp- and paper mills as operating in 1994 in the U.S.and Sweden respectively. The two other scenarios are constituted by a »reference mill« in the U.S. andSweden using state-of-the-art technology. We investigate the impact of varying recycling rates and totalenergy use and CO2-emissions from the production of printing and writing paper. To economize withthe wood and that way save trees, we can use the trees that are replaced by recycling in a biomassgasification combined cycle (BIGCC) to produce electricity in a power station. This produces extra electricitywith a lower CO2 intensity than electricity generated by, for example, coal-fired power plants.The lifecycle analysis in this thesis also includes the use of waste treatment in the paper lifecycle. Both Sweden and theU.S. are countries that recycle paper. Still there is a lot of paper waste, this paper is a part of the countries municipalsolid waste (MSW). A lot of the MSW is landfilled, but parts of it are incinerated to extract electricity. The thesis hasdesigned special scenarios for the use of MSW in the lifecycle analysis.This report is studying and comparing two different countries and two different efficiencies on theBLGCC in four different scenarios. This gives a wide survey and points to essential parameters to specificallyreflect on, when making assumptions in a lifecycle analysis. The report shows that there arethree key parameters that have to be carefully considered when making a lifecycle analysis of wood inan energy and CO2-emission perspective in the pulp- and paper mill in the U.S. and in Sweden. First,there is the energy efficiency in the pulp- and paper mill, then the efficiency of the BLGCC and last theCO2 intensity of the electricity displaced by BIGCC or BLGCC generatedelectricity. It also show that with the current technology that we havetoday, it is possible to produce CO2 free paper with a waste paper amountup to 30%. The thesis discusses the system boundaries and the assumptions.Further and more detailed research, including amongst others thesystem boundaries and forestry, is recommended for more specificanswers.
Resumo:
It always has been a need for the abiltiy to create color proofs. When an error occurs late in the production process, itis allways complicated and difficult to correct the error. In this project, digital proofs been made and discussions havebeen held with several people in the printing industry, in order to examine how well excisting digital proofs, meet thedemand of the market. And how close the digital proofs can come to the actual printsheat from the press. The study hasbeen shown that the one thing that has had the most influence on the outcome for the quality of a digital proof, is theprintshop operator’s knowledge about color management and proofing systems. Many advertising agencies in the graphicindustry think rasterised proofs are not necessesary and expensive. Therefor they prefer a cheaper alternative, whichdoesn’t show colors as well as the rasterised proof, but well enough to be content with it. There are a good awarenessconcerning lack of communication between printshop, reproduction and advertising agency. Advertising agencies thinkthat printshop rarely listen to what they have to say, while the printshop think that the advertising agency doesn’t understandwhat they are trying to tell them. The outcome of the printed proofs in this study can’t be representive for howgood digital proofs are conducted in regular basis in the industry. The divergence between the print press sheat and thedigital proof that was made was bigger than expected. This shows that implementation of ICC profiles in a color managementflow, not alone is the answer to making perfect digital proofs. There are so many other issues that has to be examined,like color management software, measure tools and correct color management module. In order to make a perfectproof, you have to look at the whole picture. In the end, the human eye finally has the last word on wheather theproof is good or not.
Resumo:
This degree theme work aims to evaluate the present ICC-profile and printing ink of Dalarnas Tidningar AB. The companyhas changed printing ink quality and wants to evaluate how the present ICC-profile work with the new printingink. Four different ICC-profiles were included in the comparison.One test printing was accomplished with two different separations. Two new ICC-profile was created, as a comparingmaterial. An densitometer was used to measure the technical parameters of the printing. IT8-charts and RGB-chartswas measured with spectrophotometer. La*b*-values, CMYK-values, graybalance curves, color deflections and colorgamuts was compared on screen and on the printed material.Materials from an earlier testprinting and evalution, made by Stora Enso Kvarnsveden AB 2003, was used to evaluatethe function of Dalarnas Tidningar AB´s ICC-profile with the present printing ink quality. The IT8-chart from todaystestprinting was oppened in a program for textediting to have access to La*b*- and CMYK values. The values from theearlier testprinting was supplied from Stora Enso Kvarnsveden AB.The result of this work shows that the ICC-profile from the company, compared with de other profiles, reproduce darkershadow regions which can make loss of details. An higher saturation is recieved in the red and yellow area while thegreen and blue area lose its intensity. The profile gave images which are some contrastless and with a flat reproduction.Today printing ink quality gives more saturation and intensity in the yellow and blue area compared with former printingink. The dark tone reproduces with decreased luminance, however.
Resumo:
The connection between fluorescence and color management still is a relatively unexplored area. Thefollowing composition analyses the theory that when printing on fluorescent ink jet paper using ICCprofilesa more yellow print will appear. In theory the ICC-profile compensate for blue light that fluorescefrom the paper with the complementary color, yellow. The human eye apprehands this fluorescentlight as white.When categorizing a number of ink jet qualities some tests to indicate change of color in the final printwere made. Five qualities were chosen for further analyses, each with different white point. TheTC3.5CMYK target was prined on an ink jet printer and measured with different filters for the measurementequipment, GretagMacbeth Spectrolino. U- and UV-filters were used during the testings.From the measurement data ICC-profiles were made to make it possible to watch how the profiles compensatefor the blue change of color that appeared in the data. Although a distinct change of color intoblue were discernible in the measured data there is no evident proof that this cause a final print thatis more yellow. Other conclusions and results are to be read at the end of this composition.
Resumo:
This Degree Project is carried through in association with Fototext in Guthenburg. The firmsees benefits using”Soft Proof” technology for both economic and time-saving. The reasonfor ”Soft Proofing” for internal/ external production is to estimate and controll documentswithout using digital or chemical printing output.The different technical solutions to ”Soft Proof”, knowledges and facts aboutColorManagement together with PDF-workflow is going to pattern for a correct succesfull”Soft Proofing” on the monitor.Acrobat 5 in association with Photoshop 6 are effectively used in ”Soft Proofing” technic.The advance and capacity of the graphical softwares which are explained in this reporthelps the users to begin to experiment with ”Soft Proof”. Graphical firms which are interestedto begin working with ”Soft Proof” need to allready have knowledge in ICC-profilingand a practical ColorManaged workflow.
Resumo:
To make your company change from a conventional workflow to an ICC-based workflow you need tomake investments in time and money. On the other hand you get your reward in terms of a stable andquality safe production. To choose this way of adjusting your company to new routines requires accuracyas well as a great deal of commitment. It is not only about having the right equipment. There area lot of factors that affect the quality of production.Our ambition with this report is to bring out the importance of general thinking when it comes toICC-profiling and to discuss on which basis printing profiles should be created. Quality parameters asfor example roughness and whiteness of paper are also discussed. To be able to investigate these mattersin detail we have taken a closer look at two companies, which have chosen to commit themselvesto achive better quality through color management but still feel that they have some problems withtheir workflow.One of the conclusions that are made in this report is that both companies should extend their investmentsin education of employees to become less independent of consultants, but also to increase theinterest in changes within the company. It is also stressed that an ICC-profile only can be efficient if acompany commits itself to accuracy regarding routines, control and calibration.
Resumo:
The question formulation in the essay brought up whether Clas Ohlson works today with their graphical productionflow and if that way of working leads to a desirable result in press. After a dialogue with Clas Ohlson it emerged thatthey had certain problems with the material that came out of the printing presses. Certain colours were not reproducedaccording to the stated values that had been developed. In March -08 an analysis of the graphical production flowspresent situation were done at Clas Ohlsons in order to find out how they worked with their production of print materials.In the analysis, their way to work with color spaces, displays, ICC-profiles, PDF-exports, pictures and printerswere examined. Occasional interviews were also implemented with responsible personnel about how they worked withdifferent aspects.Deficiencies were found on almost all examined parts in their graphical production flow. Wrong colorspaces andCMYK-profiles was used in big extent, the displays where uncalibrated or incorrectly calibrated, wrong PDF-presetswas used frequently and it also showed that six different suppliers for their printing materials were used. The solutionsthat were relevant for the problems and defects were later on presented as proposals on measures.
Resumo:
This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.
Resumo:
EFI Colorproof XF was found to be more convenient from a user’s aspect, and had features which are covered in the ISO 12647-7 standard (e.g. the ability to simulate screening and print margin information), which Photoshop CS3 lacked. None of the proofing systems distinguished itself in a clear way from the other; sometimes, on certain substrates, Photoshop CS3 produced most accurate colours, sometimes EFI Colorproof XF did. Further investigations need to be carried out to tell more exactly which system produce most accurate colours. Only 6 out of 34 simulation-combinations had colours within the tolerances in the standard. The result also shows that the production substrates should not be used as proofing substrates. Instead the proofing papers especially made for ink jet should be used to obtain more colour-accurate prints.
Resumo:
This paper aims to present three new methods for color detection and segmentation of road signs. The images are taken by a digital camera mounted in a car. The RGB images are converted into IHLS color space, and new methods are applied to extract the colors of the road signs under consideration. The methods are tested on hundreds of outdoor images in different light conditions, and they show high robustness. This project is part of the research taking place in Dalarna University / Sweden in the field of the ITS.