3 resultados para Coherent noise attenuation
em Dalarna University College Electronic Archive
Resumo:
The world is urbanizing rapidly with more than half of the global population now living in cities. Improving urban environments for the well-being of the increasing number of urban citizens is becoming one of the most important challenges of the 21st century. Even though it is common that city planners have visions of a ’good urban milieu’, those visions are concerning visual aesthetics or practical matters. The qualitative perspective of sound, such as sonic diversity and acoustic ecology are neglected aspects in architectural design. Urban planners and politicians are therefore largely unaware of the importance of sounds for the intrinsic quality of a place. Whenever environmental acoustics is on the agenda, the topic is noise abatement or noise legislation – a quantitative attenuation of sounds. Some architects may involve acoustical aspects in their work but sound design or acoustic design has yet to develop to a distinct discipline and be incorporated in urban planning.My aim was to investigate to what extent the urban soundscape is likely to improve if modern architectural techniques merge with principles of acoustics. This is an important, yet unexplored, research area. My study explores and analyses the acoustical aspects in urban development and includes interviews with practitioners in the field of urban acoustics, situated in New York City. My conclusion is that to achieve a better understanding of the human living conditions in mega-cities, there is a need to include sonic components into the holistic sense of urban development.
Resumo:
Ultracold gases in ring geometries hold promise for significant improvements of gyroscopic sensitivity. Recent experiments have realized atomic and molecular storage rings with radii in the centimeter range, sizes whose practical use in inertial sensors requires velocities significantly in excess of typical recoil velocities. We use a combination of analytical and numerical techniques to study the coherent acceleration of matter waves in circular waveguides, with particular emphasis on its impact on single-mode propagation. In the simplest case we find that single-mode propagation is best maintained by the application of time-dependent acceleration force with the temporal profile of a Blackmann pulse. We also assess the impact of classical noise on the acceleration process.
Resumo:
Speech perception runs smoothly and automatically when there is silence in the background, but when the speech signal is degraded by background noise or by reverberation, effortful cognitive processing is needed to compensate for the signal distortion. Previous research has typically investigated the effects of signal-to-noise ratio (SNR) and reverberation time in isolation, whilst few have looked at their interaction. In this study, we probed how reverberation time and SNR influence recall of words presented in participants' first- (L1) and second-language (L2). A total of 72 children (10 years old) participated in this study. The to-be-recalled wordlists were played back with two different reverberation times (0.3 and 1.2 s) crossed with two different SNRs (+3 dBA and +12 dBA). Children recalled fewer words when the spoken words were presented in L2 in comparison with recall of spoken words presented in L1. Words that were presented with a high SNR (+12 dBA) improved recall compared to a low SNR (+3 dBA). Reverberation time interacted with SNR to the effect that at +12 dB the shorter reverberation time improved recall, but at +3 dB it impaired recall. The effects of the physical sound variables (SNR and reverberation time) did not interact with language. © 2016 Hurtig, Keus van de Poll, Pekkola, Hygge, Ljung and Sörqvist.