4 resultados para Classification approach
em Dalarna University College Electronic Archive
Resumo:
Recommendation systems aim to help users make decisions more efficiently. The most widely used method in recommendation systems is collaborative filtering, of which, a critical step is to analyze a user's preferences and make recommendations of products or services based on similarity analysis with other users' ratings. However, collaborative filtering is less usable for recommendation facing the "cold start" problem, i.e. few comments being given to products or services. To tackle this problem, we propose an improved method that combines collaborative filtering and data classification. We use hotel recommendation data to test the proposed method. The accuracy of the recommendation is determined by the rankings. Evaluations regarding the accuracies of Top-3 and Top-10 recommendation lists using the 10-fold cross-validation method and ROC curves are conducted. The results show that the Top-3 hotel recommendation list proposed by the combined method has the superiority of the recommendation performance than the Top-10 list under the cold start condition in most of the times.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
Parkinson’s disease is a clinical syndrome manifesting with slowness and instability. As it is a progressive disease with varying symptoms, repeated assessments are necessary to determine the outcome of treatment changes in the patient. In the recent past, a computer-based method was developed to rate impairment in spiral drawings. The downside of this method is that it cannot separate the bradykinetic and dyskinetic spiral drawings. This work intends to construct the computer method which can overcome this weakness by using the Hilbert-Huang Transform (HHT) of tangential velocity. The work is done under supervised learning, so a target class is used which is acquired from a neurologist using a web interface. After reducing the dimension of HHT features by using PCA, classification is performed. C4.5 classifier is used to perform the classification. Results of the classification are close to random guessing which shows that the computer method is unsuccessful in assessing the cause of drawing impairment in spirals when evaluated against human ratings. One promising reason is that there is no difference between the two classes of spiral drawings. Displaying patients self ratings along with the spirals in the web application is another possible reason for this, as the neurologist may have relied too much on this in his own ratings.
Resumo:
The purpose of this work in progress study was to test the concept of recognising plants using images acquired by image sensors in a controlled noise-free environment. The presence of vegetation on railway trackbeds and embankments presents potential problems. Woody plants (e.g. Scots pine, Norway spruce and birch) often establish themselves on railway trackbeds. This may cause problems because legal herbicides are not effective in controlling them; this is particularly the case for conifers. Thus, if maintenance administrators knew the spatial position of plants along the railway system, it may be feasible to mechanically harvest them. Primary data were collected outdoors comprising around 700 leaves and conifer seedlings from 11 species. These were then photographed in a laboratory environment. In order to classify the species in the acquired image set, a machine learning approach known as Bag-of-Features (BoF) was chosen. Irrespective of the chosen type of feature extraction and classifier, the ability to classify a previously unseen plant correctly was greater than 85%. The maintenance planning of vegetation control could be improved if plants were recognised and localised. It may be feasible to mechanically harvest them (in particular, woody plants). In addition, listed endangered species growing on the trackbeds can be avoided. Both cases are likely to reduce the amount of herbicides, which often is in the interest of public opinion. Bearing in mind that natural objects like plants are often more heterogeneous within their own class rather than outside it, the results do indeed present a stable classification performance, which is a sound prerequisite in order to later take the next step to include a natural background. Where relevant, species can also be listed under the Endangered Species Act.