4 resultados para Chronic leg ulcers
em Dalarna University College Electronic Archive
Resumo:
Bakgrund: Kroniska sår innefattas av bensår, fotsår, trycksår, diabetessår, sårskada, tumörer, reumatiska sår och vårdskador vid komplikationer efter kirurgiska ingrepp, som inte har läkt inom 6 veckor. Forskning visar att trots att förebyggande strategier används, utvecklas det sår som kräver behandling. I mötet med vården är en god omvårdnad och en god vårdrelation viktig. Bristen på dessa leder ofta till ett lidande som individen måste kämpa emot med copingstrategier. Syfte: Syftet med denna litteraturstudie var att belysa personers erfarenhet av att leva med kroniska sår. Metod: En litteraturöversikt gjordes i denna studie med 15 vetenskapliga artiklar, som bestod av både kvantitativ och kvalitativ metod. Resultat: 3 huvudkategorier identifierades: begränsningar, lidande samt coping. Deltagarna ansåg att en brist på information samt begränsningar i vardagen påverkade individens sociala umgänge och fysiska aktivitet. Smärta, skam och rädsla ledde till depression. För att hantera detta använde individerna sig av familjen och stöd av vårdpersonalen Slutsats: Det framkom att individernas dagliga liv påverkades av det kroniska såret. Den konstanta smärtan orsakade sömnsvårigheter hos individen, vilket ytterligare försvårade hanteringen av smärtan och vardagen. Kontinuitet hos vårdpersonal och i behandlingen gav personerna en trygghet och en ökad förståelse för sitt tillstånd. Det belystes att det var viktigt att vårdpersonalen ser individen bakom såret, och inte bara lägger sitt fokus på sårläkningen och behandlingen.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
OBJECTIVE: Higher levels of the novel inflammatory marker pentraxin 3 (PTX3) predict cardiovascular mortality in patients with chronic kidney disease (CKD). Yet, whether PTX3 predicts worsening of kidney function has been less well studied. We therefore investigated the associations between PTX3 levels, kidney disease measures and CKD incidence. METHODS: Cross-sectional associations between serum PTX3 levels, urinary albumin/creatinine ratio (ACR) and cystatin C-estimated glomerular filtration rate (GFR) were assessed in two independent community-based cohorts of elderly subjects: the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS, n = 768, 51% women, mean age 75 years) and the Uppsala Longitudinal Study of Adult Men (ULSAM, n = 651, mean age 77 years). The longitudinal association between PTX3 level at baseline and incident CKD (GFR <60 mL( ) min(-1) 1.73 m(-) ²) was also analysed (number of events/number at risk: PIVUS 229/746, ULSAM 206/315). RESULTS: PTX3 levels were inversely associated with GFR [PIVUS: B-coefficient per 1 SD increase -0.16, 95% confidence interval (CI) -0.23 to -0.10, P < 0.001; ULSAM: B-coefficient per 1 SD increase -0.09, 95% CI -0.16 to -0.01, P < 0.05], but not ACR, after adjusting for age, gender, C-reactive protein and prevalent cardiovascular disease in cross-sectional analyses. In longitudinal analyses, PTX3 levels predicted incident CKD after 5 years in both cohorts [PIVUS: multivariable odds ratio (OR) 1.21, 95% CI 1.01-1.45, P < 0.05; ULSAM: multivariable OR 1.37, 95% CI 1.07-1.77, P < 0.05]. CONCLUSIONS: Higher PTX3 levels are associated with lower GFR and independently predict incident CKD in elderly men and women. Our data confirm and extend previous evidence suggesting that inflammatory processes are activated in the early stages of CKD and drive impairment of kidney function. Circulating PTX3 appears to be a promising biomarker of kidney disease.