2 resultados para COX-1

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Turnover of the extracellular matrix in all solid organs is governed mainly by a balance between the degrading matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). An altered extracellular matrix metabolism has been implicated in a variety of diseases. We investigated relations of serum levels of MMP-9 and TIMP-1 to mortality risk from an etiological perspective. Design: The prospective Uppsala Longitudinal Study of Adult Men (ULSAM) cohort, followed from 1991–1995 for up to 18.1 years. A random population-based sample of 1,082 71-year-old men, no loss to follow-up. Endpoints were all-cause (n = 628), cardiovascular (n = 230), non-cardiovascular (n = 398) and cancer mortality (n = 178), and fatal or non-fatal myocardial infarction (n = 138) or stroke (n = 163). Results: Serum MMP-9 and TIMP-1 levels were associated with risk of all-cause mortality (Cox proportional hazard ratio [HR] per standard deviation 1.10, 95% confidence interval [CI] 1.03–1.19; and 1.11, 1.02–1.20; respectively). TIMP-1 levels were mainly related to risks of cardiovascular mortality and stroke (HR per standard deviation 1.22, 95% CI 1.09–1.37; and 1.18, 1.04–1.35; respectively). All relations except those of TIMP-1 to stroke risk were attenuated by adjustment for cardiovascular disease risk factors. Relations in a subsample without cardiovascular disease or cancer were similar to those in the total sample. Conclusion: In this community-based cohort of elderly men, serum MMP-9 and TIMP-1 levels were related to mortality risk. An altered extracellular matrix metabolism may be involved in several detrimental pathways, and circulating MMP-9 or TIMP-1 levels may be relevant markers thereof.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: Soluble tumor necrosis factor receptors 1 and 2 (sTNFR1 and sTNFR2) contribute to experimental diabetic kidney disease, a condition with substantially increased cardiovascular risk when present in patients. Therefore, we aimed to explore the levels of sTNFRs, and their association with prevalent kidney disease, incident cardiovascular disease, and risk of mortality independently of baseline kidney function and microalbuminuria in a cohort of patients with type 2 diabetes. In pre-defined secondary analyses we also investigated whether the sTNFRs predict adverse outcome in the absence of diabetic kidney disease. METHODS: The CARDIPP study, a cohort study of 607 diabetes patients [mean age 61 years, 44 % women, 45 cardiovascular events (fatal/non-fatal myocardial infarction or stroke) and 44 deaths during follow-up (mean 7.6 years)] was used. RESULTS: Higher sTNFR1 and sTNFR2 were associated with higher odds of prevalent kidney disease [odd ratio (OR) per standard deviation (SD) increase 1.60, 95 % confidence interval (CI) 1.32-1.93, p < 0.001 and OR 1.54, 95 % CI 1.21-1.97, p = 0.001, respectively]. In Cox regression models adjusting for age, sex, glomerular filtration rate and urinary albumin/creatinine ratio, higher sTNFR1 and sTNFR2 predicted incident cardiovascular events [hazard ratio (HR) per SD increase, 1.66, 95 % CI 1.29-2.174, p < 0.001 and HR 1.47, 95 % CI 1.13-1.91, p = 0.004, respectively]. Results were similar in separate models with adjustments for inflammatory markers, HbA1c, or established cardiovascular risk factors, or when participants with diabetic kidney disease at baseline were excluded (p < 0.01 for all). Both sTNFRs were associated with mortality. CONCLUSIONS/INTERPRETATIONS: Higher circulating sTNFR1 and sTNFR2 are associated with diabetic kidney disease, and predicts incident cardiovascular disease and mortality independently of microalbuminuria and kidney function, even in those without kidney disease. Our findings support the clinical utility of sTNFRs as prognostic markers in type 2 diabetes.