8 resultados para Business Intelligence,Data Warehouse,Sistemi Informativi
em Dalarna University College Electronic Archive
Resumo:
Denna studie syftar till att undersöka hur en stor organisation arbetar med förvaltning av information genom att undersöka dess nuvarande informationsförvaltning, samt undersöka eventuella förslag till framtida informationsförvaltning. Vidare syftar studien också till att undersöka hur en stor organisation kan etablera en tydlig styrning, samverkan, hantering och ansvars- och rollfördelning kring informationsförvaltning. Denna studie är kvalitativ, där datainsamlingen sker genom dokumentstudier och intervjuer. Studien bedrivs med abduktion och är en normativ fallstudie då studiens mål är att ge vägledning och föreslå åtgärder till det fall som uppdragsgivaren har bett mig att studera. Fallet i denna studie är ett typiskt fall, då studiens resultat kan vara i intresse för fler än studiens uppdragsgivare, exempelvis organisationer med liknande informationsmiljö. För att samla teori till studien så har jag genomfört litteraturstudier om ämnen som är relevanta för studiens syfte: Informationsförvaltning, Business Intelligence, Data Warehouse och dess arkitektur, samt Business Intelligence Competency Center. Denna studie bidrar med praktiskt kunskapsbidrag, då studien ger svar på praktiska problem. Uppdragsgivaren har haft praktiska problem i och med en icke fungerade informationsförvaltning, och denna studie har bidragit med förslag på framtida informationsförvaltning. Förslaget på framtida informationsförvaltning involverar ett centraliserat Data Warehouse, samt utvecklingen utav en verksamhet som hanterar informationsförvaltning och styrningen kring informationsförvaltningen inom hela organisationen.
Resumo:
Inom Business Intelligence har begreppet Self-Service Business Intelligence (Self-Service BI) vuxit fram. Self-Service BI omfattar verktyg vilka möjliggör för slutanvändare att göra analyser och skapa rapporter utan teknisk support. Ett av dessa verktyg är Microsoft PowerPivot.På Transportstyrelsens Järnvägsavdelning finns behov av ett Self-Service BI-verktyg. Vi fick i uppdrag av Sogeti att undersöka om PowerPivot var ett lämpligt verktyg för Transportstyrelsen. Målet med uppsatsen har varit att testa vilka tekniska möjligheter och begränsningar PowerPivot har samt huruvida PowerPivot är användbart för Transportstyrelsen.För att få en djupare förståelse för Self-Service BI har vi kartlagt vilka möjligheter och begränsningar med Self-Service BI-verktyg som finns beskrivna i litteraturen. Vi har sedan jämfört dessa med våra testresultat vilket har varit syftet med uppsatsen.Resultatet av testerna har visat att Transportstyrelsens Järnvägsavdelning initialt behöver teknisk support för att använda PowerPivot. Testerna har även visat att vissa av Transportstyrelsens krav inte kan uppfyllas. Detta minskar användbarheten för Transportstyrelsen.Vidare har vi kommit fram till att Self-Service BI inte alltid är enkelt att använda för slutanvändare utan teknisk support. Resultatet visar även att det krävs en BI-infrastruktur för att enkelt skapa rapporter med god kvalitet och högsta möjliga korrekthet.
Resumo:
Denna rapport behandlar vilka egenskaper som är viktiga att ta hänsyn till vid val av rapportverktyg inom området Business Intelligence. Begreppet BI är relativt omfattande och syftar till färdigheter, teknologier, applikationer och metoder av systematisk och vetenskaplig art som en organisation använder för att bättre förstå sin verksamhet, sin omgivning och omvärld. Rapportverktyg utgör således en mindre del i en större kedja av processer för att stödja beslutstagande.Landstinget Dalarna har anlitat Sogeti, som har varit vår uppdragsgivare för detta examensarbete, för att implementera BI i sin verksamhet och vår studie har sitt ursprung i att Landstinget Dalarna idag har ett stort behov av olika typer av rapporter i många olika delar av organisationen. Rapportbehovet har visat sig vara omfattande och för att lätta på arbetsbördan för de systemutvecklare som skapar rapporter har funderingar framkommit att det skulle kunna vara en bra lösning att låta användarna inom Landstinget Dalarna själva skapa en del av sina egna rapporter. Målet med arbetet är att ge de systemutvecklare som arbetar i projektet riktlinjer kring vilka egenskaper olika rapportverktyg innehar för att de enklare skall kunna avgöra vilket som är lämpligast att använda. De verktyg som i denna studie jämförs med varandra är Report Builder 3.0, PowerPivot samt Dashboard Designer 2010, samtliga från Microsoft.För att göra denna jämförelse mellan olika rapportverktyg krävs bra underlag för att kunna förstå vilka egenskaper som är relevanta att fokusera på samt om några egenskaper väger tyngre än andra.Efter att ha utfört intervjuer med systemutvecklare som arbetar med BI har vi kunnat skapa oss en tydligare bild av detta område. Egenskaperna har sammanställts för att användas i vår jämförelse mellan de olika rapportverktygen. Att dessa egenskaper är av vikt bekräftas till viss del av den teori som finns på området. De egenskaper som främst visar sig vara viktiga i valet är vilken befintlig plattform som används, verktygets möjlighet att skapa interaktiva rapporter samt vilken typ av användare verktyget riktar sig till. Även andra egenskaper visar sig vara viktiga att ta hänsyn till, men då främst beroende på vilka krav som ställs. Resultatet av den praktiska jämförelsen mellan de olika rapportverktygen visar att verktygen till viss del överlappar varandra i funktionalitet samtidigt som de är anpassade för olika typer av användare och plattformar. De utgör allihop delar i Microsofts BI-pussel som på olika sätt skall bidra till att alltid kunna täcka upp de krav som kan finnas beroende på behov och förutsättningar. Samtidigt visar det sig att jämförda rapportverktyg besitter vissa generella egenskaper som gör att verktygen i stora drag klarar, om än på olika sätt, att skapa snarlika rapporter.
Predictive models for chronic renal disease using decision trees, naïve bayes and case-based methods
Resumo:
Data mining can be used in healthcare industry to “mine” clinical data to discover hidden information for intelligent and affective decision making. Discovery of hidden patterns and relationships often goes intact, yet advanced data mining techniques can be helpful as remedy to this scenario. This thesis mainly deals with Intelligent Prediction of Chronic Renal Disease (IPCRD). Data covers blood, urine test, and external symptoms applied to predict chronic renal disease. Data from the database is initially transformed to Weka (3.6) and Chi-Square method is used for features section. After normalizing data, three classifiers were applied and efficiency of output is evaluated. Mainly, three classifiers are analyzed: Decision Tree, Naïve Bayes, K-Nearest Neighbour algorithm. Results show that each technique has its unique strength in realizing the objectives of the defined mining goals. Efficiency of Decision Tree and KNN was almost same but Naïve Bayes proved a comparative edge over others. Further sensitivity and specificity tests are used as statistical measures to examine the performance of a binary classification. Sensitivity (also called recall rate in some fields) measures the proportion of actual positives which are correctly identified while Specificity measures the proportion of negatives which are correctly identified. CRISP-DM methodology is applied to build the mining models. It consists of six major phases: business understanding, data understanding, data preparation, modeling, evaluation, and deployment.
Resumo:
Since the last decade the problem of surface inspection has been receiving great attention from the scientific community, the quality control and the maintenance of products are key points in several industrial applications.The railway associations spent much money to check the railway infrastructure. The railway infrastructure is a particular field in which the periodical surface inspection can help the operator to prevent critical situations. The maintenance and monitoring of this infrastructure is an important aspect for railway association.That is why the surface inspection of railway also makes importance to the railroad authority to investigate track components, identify problems and finding out the way that how to solve these problems. In railway industry, usually the problems find in railway sleepers, overhead, fastener, rail head, switching and crossing and in ballast section as well. In this thesis work, I have reviewed some research papers based on AI techniques together with NDT techniques which are able to collect data from the test object without making any damage. The research works which I have reviewed and demonstrated that by adopting the AI based system, it is almost possible to solve all the problems and this system is very much reliable and efficient for diagnose problems of this transportation domain. I have reviewed solutions provided by different companies based on AI techniques, their products and reviewed some white papers provided by some of those companies. AI based techniques likemachine vision, stereo vision, laser based techniques and neural network are used in most cases to solve the problems which are performed by the railway engineers.The problems in railway handled by the AI based techniques performed by NDT approach which is a very broad, interdisciplinary field that plays a critical role in assuring that structural components and systems perform their function in a reliable and cost effective fashion. The NDT approach ensures the uniformity, quality and serviceability of materials without causing any damage of that materials is being tested. This testing methods use some way to test product like, Visual and Optical testing, Radiography, Magnetic particle testing, Ultrasonic testing, Penetrate testing, electro mechanic testing and acoustic emission testing etc. The inspection procedure has done periodically because of better maintenance. This inspection procedure done by the railway engineers manually with the aid of AI based techniques.The main idea of thesis work is to demonstrate how the problems can be reduced of thistransportation area based on the works done by different researchers and companies. And I have also provided some ideas and comments according to those works and trying to provide some proposal to use better inspection method where it is needed.The scope of this thesis work is automatic interpretation of data from NDT, with the goal of detecting flaws accurately and efficiently. AI techniques such as neural networks, machine vision, knowledge-based systems and fuzzy logic were applied to a wide spectrum of problems in this area. Another scope is to provide an insight into possible research methods concerning railway sleeper, fastener, ballast and overhead inspection by automatic interpretation of data.In this thesis work, I have discussed about problems which are arise in railway sleepers,fastener, and overhead and ballasted track. For this reason I have reviewed some research papers related with these areas and demonstrated how their systems works and the results of those systems. After all the demonstrations were taking place of the advantages of using AI techniques in contrast with those manual systems exist previously.This work aims to summarize the findings of a large number of research papers deploying artificial intelligence (AI) techniques for the automatic interpretation of data from nondestructive testing (NDT). Problems in rail transport domain are mainly discussed in this work. The overall work of this paper goes to the inspection of railway sleepers, fastener, ballast and overhead.
Resumo:
In this paper, we study the influence of the National Telecom Business Volume by the data in 2008 that have been published in China Statistical Yearbook of Statistics. We illustrate the procedure of modeling “National Telecom Business Volume” on the following eight variables, GDP, Consumption Levels, Retail Sales of Social Consumer Goods Total Renovation Investment, the Local Telephone Exchange Capacity, Mobile Telephone Exchange Capacity, Mobile Phone End Users, and the Local Telephone End Users. The testing of heteroscedasticity and multicollinearity for model evaluation is included. We also consider AIC and BIC criterion to select independent variables, and conclude the result of the factors which are the optimal regression model for the amount of telecommunications business and the relation between independent variables and dependent variable. Based on the final results, we propose several recommendations about how to improve telecommunication services and promote the economic development.
Resumo:
Linguistic features of business letters have been a research target of both linguists and business writers. In this study, the language of British and Pakistani Business letters was compared and contrasted in terms of concreteness and abstractness. A corpus of 100 business letters from Inner Circle and Outer Circle writers were collected for analysis. The findings of the study revealed that British writers use more specific and concrete nouns, definite determiners, numeral, possessive and demonstrative adjectives, cohesive and rhetorical devices than the Pakistani Writers in order to be become concrete and vivid in their communication. The present findings are rather corpus specific since the data include only two countries; however this study may lead to further cross circle research including Expanding Circle research of business letters in terms of concreteness and abstractness. The issue of concreteness in Cross-circle business English can also be studied from psychological, sociological and anthropological perspectives in future Research.
Resumo:
Parkinson's disease (PD) is a degenerative illness whose cardinal symptoms include rigidity, tremor, and slowness of movement. In addition to its widely recognized effects PD can have a profound effect on speech and voice.The speech symptoms most commonly demonstrated by patients with PD are reduced vocal loudness, monopitch, disruptions of voice quality, and abnormally fast rate of speech. This cluster of speech symptoms is often termed Hypokinetic Dysarthria.The disease can be difficult to diagnose accurately, especially in its early stages, due to this reason, automatic techniques based on Artificial Intelligence should increase the diagnosing accuracy and to help the doctors make better decisions. The aim of the thesis work is to predict the PD based on the audio files collected from various patients.Audio files are preprocessed in order to attain the features.The preprocessed data contains 23 attributes and 195 instances. On an average there are six voice recordings per person, By using data compression technique such as Discrete Cosine Transform (DCT) number of instances can be minimized, after data compression, attribute selection is done using several WEKA build in methods such as ChiSquared, GainRatio, Infogain after identifying the important attributes, we evaluate attributes one by one by using stepwise regression.Based on the selected attributes we process in WEKA by using cost sensitive classifier with various algorithms like MultiPass LVQ, Logistic Model Tree(LMT), K-Star.The classified results shows on an average 80%.By using this features 95% approximate classification of PD is acheived.This shows that using the audio dataset, PD could be predicted with a higher level of accuracy.