3 resultados para Buried pipes

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report describes the work done creating a computer model of a kombi tank from Consolar. The model was created with Presim/Trnsys and Fittrn and DF were used to identify the parameters. Measurements were carried out and were used to identify the values of the parameters in the model. The identifications were first done for every circuit separately. After that, all parameters are normally identified together using all the measurements. Finally the model should be compared with other measurements, preferable realistic ones. The two last steps have not yet been carried out, because of problems finding a good model for the domestic hot water circuit.The model of the domestic hot water circuit give relatively good results for low flows at 5 l/min, but is not good for higher flows. In the report suggestions for improving the model are given. However, there was not enough time to test this within the project as much time was spent trying to solve problems with the model crashing. Suggestions for improving the model for the domestic circuit are given in chapter 4.4. The improved equations that are to be used in the improved model are given by equation 4.18, 4.19 and 4.22.Also for the boiler circuit and the solar circuit there are improvements that can be done. The model presented here has a few shortcomings, but with some extra work, an improved model can be created. In the attachment (Bilaga 1) is a description of the used model and all the identified parameters.A qualitative assessment of the store was also performed based on the measurements and the modelling carried out. The following summary of this can be given: Hot Water PreparationThe principle for controlling the flow on the primary side seems to work well in order to achieve good stratification. Temperatures in the bottom of the store after a short use of hot water, at a coldwater temperature of 12°C, was around 28-30°C. This was almost independent of the temperature in the store and the DHW-flow.The measured UA-values of the heat exchangers are not very reliable, but indicates that the heat transfer rates are much better than for the Conus 500, and in the same range as for other stores tested at SERC.The function of the mixing valve is not perfect (see diagram 4.3, where Tout1 is the outlet hot water temperature, and Tdhwo and Tdhw1 is the inlet temperature to the hot and cold side of the valve respectively). The outlet temperature varies a lot with different temperatures in the storage and is going down from 61°C to 47°C before the cold port is fully closed. This gives a problem to find a suitable temperature setting and gives also a risk that the auxiliary heating is increased instead of the set temperature of the valve, when the hot water temperature is to low.Collector circuitThe UA-value of the collector heat exchanger is much higher than the value for Conus 500, and in the same range as the heat exchangers in other stores tested at SERC.Boiler circuitThe valve in the boiler circuit is used to supply water from the boiler at two different heights, depending on the temperature of the water. At temperatures from the boiler above 58.2°C, all the water is injected to the upper inlet. At temperatures below 53.9°C all the water is injected to the lower inlet. At 56°C the water flow is equally divided between the two inlets. Detailed studies of the behaviour at the upper inlet shows that better accuracy of the model would have been achieved using three double ports in the model instead of two. The shape of the upper inlet makes turbulence, that could be modelled using two different inlets. Heat lossesThe heat losses per m3 are much smaller for the Solus 1050, than for the Conus 500 Storage. However, they are higher than those for some good stores tested at SERC. The pipes that are penetrating the insulation give air leakage and cold bridges, which could be a major part of the losses from the storage. The identified losses from the bottom of the storage are exceptionally high, but have less importance for the heat losses, due to the lower temperatures in the bottom. High losses from the bottom can be caused by air leakage through the insulation at the pipe connections of the storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Syftet med föreliggande rapport har varit att visa på de grundläggande egenskaperna för solfångare med interna reflektorer. Vidare tjänar rapporten syftet att ge en bild av dagsläget inom detta område och därigenom fungera som en utgångspunkt för forskning och utveckling kring solfångare med interna reflektorer för svenskt bruk. Arbetet har därför till stor del gått ut på att leta referenser genom tidskrifter och databaser.Den stora fördelen med CPC-solfångare, som är den klart dominerande typen av solfångare med interna reflektorer, består i dess låga värmeförluster, vilket gör dem attraktiva speciellt vid högre driftstemperaturer. De optiska egenskaperna hos olika typer av CPC-solfångare har grundligt studerats sedan mitten av 70-talet, medan studier av värmeförluster varit mer begränsad. Idag har forskningen och intresset för CPC-solfångare mattats av något, men fortsatt forskning pågår t ex i ett flertal länder, t ex USA, Israel, NordIrland och Japan. Endast en kommersiell tillverkare av CPC-solfångare har hittats (Portugal), vilken dock upphört p g a yttre ekonomiska faktorer. Japans CPC-teknologi anses stå närmast kommersiellt genombrott.Idag har utvecklingen av CPC-solfångare inriktats mot i huvudsak två koncept:1. Stationära lågkoncentrerande CPC-solfångare för produktion av värme i området 60-100 grader C. Dessa konstruktioner är ofta enkla och man försöker minimera kostnaderna för dessa konstruktioner genom att minimera behovet av t ex reflektorer och isolering. Syftet med dessa är att konkurera med plana solfångare vilka producerar värme i samma temperaturintervall. Typiska solfångarparametrar 5 som rapporteras för denna typ är UL < 3.0 W/m2 ,°C och n0 = 0.65-0.75.2. Stationära lågkoncentrerande CPC-solfångare för produktion av värme i området 100-300 grader C. Ofta bygger dessa på olika teknik för evakuering av absorbatorn, antingen genom att omsluta cirkulära absorbatorer med glasrör eller genom att införa CPC-reflektorer i heatpipes. Syftet med dessa är ofta att på ett billigt sätt producera högtemperaturvärme för olika industriprocesser, och därmed konkurera med koncentrerande solfångare typ paraboliska tråg eller traditionella heat-pipes.Beräkningar av vad en Svensk CPC-solfångare, baserad på de plana absorbatorer som finns på marknaden idag, kan prestera visar att årsutbytet av energi är jämförbart med de bästa svenska plana solfångaren som finns på marknaden idag då driftstemperaturen är ca 60-65 °C. För högre driftstemperaturer ökar skillnaden till CPC-solfångarens fördel. Vidare visas att årsutbytet har en jämnare fördelning över året jämfört, med vad en plan solfångare med samma prestanda har. Den högre prestandan vid höga driftstemperaturer och den jämnare fördelningen av energiproduktion över året gör solfångare med CPC-reflektorer intressanta för större solfångarfält, kopplade till nät med höga returtemperaturer och/eller solvärmesystem med säsongslager.Det är dock brist på undersökningar av värmeförluster i CPC-solfångare med låga koncentrationer och med plana absorbatorer, vilket är av intresse ifall de svenska erfarenheterna av plana solfångare skall tas tillvara. Potentialen med ytterligare reduktion av värmeförlusterna genom att införa extra konvektionshinder i kombination med plan absorbator har inte heller undersökts tillräckligt.