4 resultados para Bubble Defects
em Dalarna University College Electronic Archive
Resumo:
Defects are often present in rolled products, such as wire rod. The markets demand for wire rod without any defects has increased. In the final wire rod products, defects originating from the steel making, casting, pre-rolling of billets and during the wire rod rolling can appear. In this work, artificial V-shaped longitudinal surface cracks has been analysed experimentally and by means of FEM. The results indicate that the experiments and FEM calculations show the same tendency except in two cases, where instability due to a fairly “round” false round bars disturbed the experiment. FE studies in combination with practical experiments are necessary in order to understand the behaviour of the material flows in the groove and to explain whether the crack will open up as a V-shape or if it will be closed as an I-shape.
Resumo:
Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.
Resumo:
Economic growth is the increase in the inflation-adjusted market value of the goods and services produced by an economy over time. The total output is the quantity of goods or servicesproduced in a given time period within a country. Sweden was affected by two crises during the period 2000-2010: a dot-com bubble and a financial crisis. How did these two crises affect the economic growth? The changes of domestic output can be separated into four parts: changes in intermediate demand, final domestic demand, export demand and import substitution. The main purpose of this article is to analyze the economic growth during the period 2000-2010, with focus on the dot-com bubble in the beginning of the period 2000-2005, and the financial crisis at the end of the period 2005-2010. The methodology to be used is the structural decomposition method. This investigation shows that the main contributions to the Swedish total domestic output increase in both the period 2000-2005 and the period 2005-2010 were the effect of domestic demand. In the period 2005-2010, financial crisis weakened the effect of export. The output of the primary sector went from a negative change into a positive, explained mainly by strong export expansion. In the secondary sector, export had most effect in the period 2000-2005. Nevertheless, domestic demand and import ratio had more effect during the financial crisis period. Lastly, in the tertiary sector, domestic demand can mainly explain the output growth in the whole period 2000-2010.
Resumo:
It is known that despite companies’ efforts to improve the quality of their products, design and assembly defects results in large repair costs both in terms of repair and providing feedback to the origin of the defect. The purpose of this paper is to study these types of defects and the defect rates in design and assembly. The paper presents a web based questionnaire answered by 29 companies. The result shows that the defect rate (defects per product) spanned from 0.01 to 10. Also, design and assembly defects covered 46%, 23% respectively, of all occurred defects. A case study is also presented, performed at a company who recently implemented a modular architecture. In this company, defects from 5 700 integrated product architectures are compared with defects from 431 modular architectures. The average defect rate increased by 21.5% – from 0.65 to 0.79 – when a more modular architecture has been implemented. Furthermore, the study showed that the assembly defects have decreased while the design defects increased. The results presented in this paper will also support the development of the MPV (Module Property Verification) method which is briefly described.