3 resultados para Automotive Coatings

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis project is a part of the research conducted in Solar industry. ABSOLICON Solar Concentrator AB has invented and started production of the prospective solar concentrated system Absolicon X10. The aims of this Thesis project are designing, assembling, calibrating and putting in operation the automatic measurement system intended to evaluate distribution of density of solar radiation in the focal line of the concentrated parabolic reflectors and to measure radiation from the artificial source of light being a calibration-testing tool.On the basis of the requirements of the company’s administration and needs of designing the concentrated reflectors the operation conditions for the Sun-Walker were formulated. As the first step, the complex design of the whole system was made and division on the parts was specified. After the preliminary conducted simulation of the functions and operation conditions of the all parts were formulated.As the next steps, the detailed design of all the parts was made. Most components were ordered from respective companies. Some of the mechanical components were made in the workshop of the company. All parts of the Sun-Walker were assembled and tested. The software part, which controls the Sun-Walker work and conducts measurements of solar irradiation, was created on the LabVIEW basis. To tune and test the software part, the special simulator was designed and assembled.When all parts were assembled in the complete system, the Sun-Walker was tested, calibrated and tuned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present thesis focuses on characterisation of microstructure and the resulting mechanical and tribological properties of CVD and PVD coatings used in metal cutting applications. These thin and hard coatings are designed to improve the tribological performance of cutting tools which in metal cutting operations may result in improved cutting performance, lower energy consumption, lower production costs and lower impact on the environment.  In order to increase the understanding of the tribological behaviour of the coating systems a number of friction and wear tests have been performed and evaluated by post-test microscopy and surface analysis. Much of the work has focused on coating cohesive and adhesive strength, surface fatigue resistance, abrasive wear resistance and friction and wear behaviour under sliding contact and metal cutting conditions. The results show that the CVD deposition of accurate crystallographic phases, e.g. α-Al2O3 rather than κ-Al2O3, textures and multilayer structures can increase the wear resistance of Al2O3. However, the characteristics of the interfaces, e.g. topography as well as interfacial porosity, have a strong impact on coating adhesion and consequently on the resulting properties.  Through the deposition of well designed bonding and template layer structures the above problems may be eliminated. Also, the presence of macro-particles in PVD coatings may have a significant impact on the interfacial adhesive strength, increasing the tendency to coating spalling and lowering the surface fatigue resistance, as well as increasing the friction in sliding contacts. Finally, the CVD-Al2O3 coating topography influences the contact conditions in sliding as well as in metal cutting. In summary, the work illuminates the importance of understanding the relationships between deposition process parameters, composition and microstructure, resulting properties and tribological performance of CVD and PVD coatings and how this knowledge can be used to develop the coating materials of tomorrow.