4 resultados para Automatic speech recognition (ASR)

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Voice processing in real-time is challenging. A drawback of previous work for Hypokinetic Dysarthria (HKD) recognition is the requirement of controlled settings in a laboratory environment. A personal digital assistant (PDA) has been developed for home assessment of PD patients. The PDA offers sound processing capabilities, which allow for developing a module for recognition and quantification HKD. Objective: To compose an algorithm for assessment of PD speech severity in the home environment based on a review synthesis. Methods: A two-tier review methodology is utilized. The first tier focuses on real-time problems in speech detection. In the second tier, acoustics features that are robust to medication changes in Levodopa-responsive patients are investigated for HKD recognition. Keywords such as Hypokinetic Dysarthria , and Speech recognition in real time were used in the search engines. IEEE explorer produced the most useful search hits as compared to Google Scholar, ELIN, EBRARY, PubMed and LIBRIS. Results: Vowel and consonant formants are the most relevant acoustic parameters to reflect PD medication changes. Since relevant speech segments (consonants and vowels) contains minority of speech energy, intelligibility can be improved by amplifying the voice signal using amplitude compression. Pause detection and peak to average power rate calculations for voice segmentation produce rich voice features in real time. Enhancements in voice segmentation can be done by inducing Zero-Crossing rate (ZCR). Consonants have high ZCR whereas vowels have low ZCR. Wavelet transform is found promising for voice analysis since it quantizes non-stationary voice signals over time-series using scale and translation parameters. In this way voice intelligibility in the waveforms can be analyzed in each time frame. Conclusions: This review evaluated HKD recognition algorithms to develop a tool for PD speech home-assessment using modern mobile technology. An algorithm that tackles realtime constraints in HKD recognition based on the review synthesis is proposed. We suggest that speech features may be further processed using wavelet transforms and used with a neural network for detection and quantification of speech anomalies related to PD. Based on this model, patients' speech can be automatically categorized according to UPDRS speech ratings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve the quality of the image. Finally, a post processing technique is implemented to counter the undesirable effect in the segmented image. Fingerprint recognition system is one of the oldest recognition systems in biometrics techniques. Everyone have a unique and unchangeable fingerprint. Based on this uniqueness and distinctness, fingerprint identification has been used in many applications for a long period. A fingerprint image is a pattern which consists of two regions, foreground and background. The foreground contains all important information needed in the automatic fingerprint recognition systems. However, the background is a noisy region that contributes to the extraction of false minutiae in the system. To avoid the extraction of false minutiae, there are many steps which should be followed such as preprocessing and enhancement. One of these steps is the transformation of the fingerprint image from gray-scale image to black and white image. This transformation is called segmentation or binarization. The aim for fingerprint segmentation is to separate the foreground from the background. Due to the nature of fingerprint image, the segmentation becomes an important and challenging task. The proposed algorithm is applied on FVC2000 database. Manual examinations from human experts show that the proposed algorithm provides an efficient segmentation results. These improved results are demonstrating in diverse experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Allt eftersom utvecklingen gÃ¥r framÃ¥t inom applikationer och system sÃ¥ fÃrändras ocksÃ¥ sättet pÃ¥ vilket vi interagerar med systemet pÃ¥. Hittills har navigering och användning av applikationer och system mestadels skett med händerna och dÃ¥ genom mus och tangentbord. PÃ¥ senare tid sÃ¥ har navigering via touch-skärmar och rÃsten blivit allt mer vanligt. DÃ¥ man ska styra en applikation med hjälp av rÃsten är det viktigt att vem som helst kan styra applikationen, oavsett vilken dialekt man har. FÃr att kunna se hur korrekt ett rÃstigenkännings-API (Application Programming Interface) uppfattar svenska dialekter sÃ¥ initierades denna studie med dokumentstudier om dialekters kännetecken och ljudkombinationer. Dessa kännetecken och ljudkombinationer lÃ¥g till grund fÃr de ord vi valt ut till att testa API:et med. Varje dialekt fick alltsÃ¥ ett ord uppbyggt fÃr att vara extra svÃ¥rt fÃr API:et att uppfatta när det uttalades av just den aktuella dialekten. Därefter utvecklades en prototyp, närmare bestämt en android-applikation som fungerade som ett verktyg i datainsamlingen. DÃ¥ arbetet innehÃ¥ller en prototyp och en undersÃkning sÃ¥ valdes Design and Creation Research som forskningsstrategi med datainsamlingsmetoderna dokumentstudier och observationer fÃr att fÃ¥ Ãnskat resultat. Data samlades in via observationer med prototypen som hjälpmedel och med hjälp av dokumentstudier. Det empiriska data som registrerats via observationerna och med hjälp av applikationen pÃ¥visade att vissa dialekter var lättare fÃr API:et att uppfatta korrekt. I vissa fall var resultaten väntade dÃ¥ vissa ord uppbyggda av ljudkombinationer i enlighet med teorin skulle uttalas väldigt speciellt av en viss dialekt. Ibland blev det väldigt lÃ¥ga resultat pÃ¥ just dessa ord men i andra fall fÃrvÃ¥nansvärt hÃga. Slutsatsen vi drog av detta var att de ord vi valt ut med en baktanke om att de skulle fÃ¥ lÃ¥ga resultat fÃr den speciella dialekten endast visade sig stämma vid tvÃ¥ tillfällen. Det var istället det ord innehÃ¥llande sje- och tje-ljud som enligt teorin var gemensamma kännetecken fÃr alla dialekter som fick lägst resultat Ãverlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.