2 resultados para Amplificação de genes

em Dalarna University College Electronic Archive


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detecting both the majors genes that control the phenotypic mean and those controlling phenotypic variance has been raised in quantitative trait loci analysis. In order to mapping both kinds of genes, we applied the idea of the classic Haley-Knott regression to double generalized linear models. We performed both kinds of quantitative trait loci detection for a Red Jungle Fowl x White Leghorn F2 intercross using double generalized linear models. It is shown that double generalized linear model is a proper and efficient approach for localizing variance-controlling genes. We compared two models with or without fixed sex effect and prefer including the sex effect in order to reduce the residual variances. We found that different genes might take effect on the body weight at different time as the chicken grows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phenotypic effect of a gene is normally described by the mean-difference between alternative genotypes. A gene may, however, also influence the phenotype by causing a difference in variance between genotypes. Here, we reanalyze a publicly available Arabidopsis thaliana dataset [1] and show that genetic variance heterogeneity appears to be as common as normal additive effects on a genomewide scale. The study also develops theory to estimate the contributions of variance differences between genotypes to the phenotypic variance, and this is used to show that individual loci can explain more than 20% of the phenotypic variance. Two well-studied systems, cellular control of molybdenum level by the ion-transporter MOT1 and flowering-time regulation by the FRI-FLC expression network, and a novel association for Leaf serration are used to illustrate the contribution of major individual loci, expression pathways, and gene-by-environment interactions to the genetic variance heterogeneity.