2 resultados para Alkali activated systems

em Dalarna University College Electronic Archive


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate speed prediction is a crucial step in the development of a dynamic vehcile activated sign (VAS). A previous study showed that the optimal trigger speed of such signs will need to be pre-determined according to the nature of the site and to the traffic conditions. The objective of this paper is to find an accurate predictive model based on historical traffic speed data to derive the optimal trigger speed for such signs. Adaptive neuro fuzzy (ANFIS), classification and regression tree (CART) and random forest (RF) were developed to predict one step ahead speed during all times of the day. The developed models were evaluated and compared to the results obtained from artificial neural network (ANN), multiple linear regression (MLR) and naïve prediction using traffic speed data collected at four sites located in Sweden. The data were aggregated into two periods, a short term period (5-min) and a long term period (1-hour). The results of this study showed that using RF is a promising method for predicting mean speed in the two proposed periods.. It is concluded that in terms of performance and computational complexity, a simplistic input features to the predicitive model gave a marked increase in the response time of the model whilse still delivering a low prediction error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate measurement of a vehicle’s velocity is an essential feature in adaptive vehicle activated sign systems. Since the velocities of the vehicles are acquired from a continuous wave Doppler radar, the data collection becomes challenging. Data accuracy is sensitive to the calibration of the radar on the road. However, clear methodologies for in-field calibration have not been carefully established. The signs are often installed by subjective judgment which results in measurement errors. This paper develops a calibration method based on mining the data collected and matching individual vehicles travelling between two radars. The data was cleaned and prepared in two ways: cleaning and reconstructing. The results showed that the proposed correction factor derived from the cleaned data corresponded well with the experimental factor done on site. In addition, this proposed factor showed superior performance to the one derived from the reconstructed data.