4 resultados para Agency of images

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project is based on Artificial Intelligence (A.I) and Digital Image processing (I.P) for automatic condition monitoring of sleepers in the railway track. Rail inspection is a very important task in railway maintenance for traffic safety issues and in preventing dangerous situations. Monitoring railway track infrastructure is an important aspect in which the periodical inspection of rail rolling plane is required.Up to the present days the inspection of the railroad is operated manually by trained personnel. A human operator walks along the railway track searching for sleeper anomalies. This monitoring way is not more acceptable for its slowness and subjectivity. Hence, it is desired to automate such intuitive human skills for the development of more robust and reliable testing methods. Images of wooden sleepers have been used as data for my project. The aim of this project is to present a vision based technique for inspecting railway sleepers (wooden planks under the railway track) by automatic interpretation of Non Destructive Test (NDT) data using A.I. techniques in determining the results of inspection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The motivation for this thesis work is the need for improving reliability of equipment and quality of service to railway passengers as well as a requirement for cost-effective and efficient condition maintenance management for rail transportation. This thesis work develops a fusion of various machine vision analysis methods to achieve high performance in automation of wooden rail track inspection.The condition monitoring in rail transport is done manually by a human operator where people rely on inference systems and assumptions to develop conclusions. The use of conditional monitoring allows maintenance to be scheduled, or other actions to be taken to avoid the consequences of failure, before the failure occurs. Manual or automated condition monitoring of materials in fields of public transportation like railway, aerial navigation, traffic safety, etc, where safety is of prior importance needs non-destructive testing (NDT).In general, wooden railway sleeper inspection is done manually by a human operator, by moving along the rail sleeper and gathering information by visual and sound analysis for examining the presence of cracks. Human inspectors working on lines visually inspect wooden rails to judge the quality of rail sleeper. In this project work the machine vision system is developed based on the manual visual analysis system, which uses digital cameras and image processing software to perform similar manual inspections. As the manual inspection requires much effort and is expected to be error prone sometimes and also appears difficult to discriminate even for a human operator by the frequent changes in inspected material. The machine vision system developed classifies the condition of material by examining individual pixels of images, processing them and attempting to develop conclusions with the assistance of knowledge bases and features.A pattern recognition approach is developed based on the methodological knowledge from manual procedure. The pattern recognition approach for this thesis work was developed and achieved by a non destructive testing method to identify the flaws in manually done condition monitoring of sleepers.In this method, a test vehicle is designed to capture sleeper images similar to visual inspection by human operator and the raw data for pattern recognition approach is provided from the captured images of the wooden sleepers. The data from the NDT method were further processed and appropriate features were extracted.The collection of data by the NDT method is to achieve high accuracy in reliable classification results. A key idea is to use the non supervised classifier based on the features extracted from the method to discriminate the condition of wooden sleepers in to either good or bad. Self organising map is used as classifier for the wooden sleeper classification.In order to achieve greater integration, the data collected by the machine vision system was made to interface with one another by a strategy called fusion. Data fusion was looked in at two different levels namely sensor-level fusion, feature- level fusion. As the goal was to reduce the accuracy of the human error on the rail sleeper classification as good or bad the results obtained by the feature-level fusion compared to that of the results of actual classification were satisfactory.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Images are used in history education for a variety of reasons, not least to generate interest through a better understanding of historical events and people. The aim of this study was to investigate how historical pictures, either illustrated or documentary/photographic, can be used as a resource for activating and improving pupils' historical empathy, in the way described by Stéphane Lévasque. I conducted a reception study on five different focus groups consisting of pupils from different upper secondary schools in Sweden. The pupils varied with regard to number of credits for admission to upper secondary school. A sixth group of pupils was interviewed as a contrasting control group in order to add perspective to the results. The discussions were based on the pupils' interpretations of 34 selected pictures, all of which were taken from the most common history textbooks. Each pupil was asked to choose the picture he/she felt was the most representative historical image. On the basis of the strategies used by the pupils when interpreting the pictures and discussing them, the material was analysed in accordance with Lévesque's categories: imagination, historical contextualisation and morals. The last category, morals, was further divided into three sub-categories: sense of justice, sympathy and progression. The reflections of the pupils and the degree of contextualisation varied. It appeared that the pupils were less inclined to discuss assumptions about the persons in the pictures; instead they chose to discuss the historical context in question. The pictures in this study did not seem to trigger the pupils to fabricate anachronistic reasoning about history; when they did produce lengthy reasoning, it was contextual, structural and metahistorical. In this context, the pupils who belonged to the group with the highest average of credits showed some signs of reflection on the basis of historical context and some criticism about the historical sources. On no occasion did any of the pupils choose a picture as a concrete expression of injustice. One of the questions this study aimed to explore was whether a lack of historical context affects how pictures trigger emotions and reasoning on the basis of moral aspects. Some of the pupils displayed moral standpoints, primarily the degree of morals concerning injustice. One possible interpretation could be that the feeling of being unfairly treated and subjected to insulting behaviour and social injustice was something the pupils could relate to. The group of pupils who had not yet studied history at upper secondary school, the control group, generally made reflections using this sort of reasoning when they discussed the historical aspects of the pictures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.