14 resultados para AUSTENITIC STAINLESS STEELS

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two simulative test methods were used to study galling in sheet forming of two types of stainlesssteel sheet: austenitic (EN 1.4301) and lean duplex LDX 2101 (EN 1.4162) in different surface conditions. Thepin-on-disc test was used to analyse the galling resistance of different combinations of sheet materials and lubricants. The strip reduction test, a severe sheet forming tribology test was used to simulate the conditionsduring ironing. This investigation shows that the risk of galling is highly dependent on the surface texture of theduplex steel. Trials were also performed in an industrial tool used for high volume production of pumpcomponents, to compare forming of LDX 2101 and austenitic stainless steel with equal thickness. The forming forces, the geometry and the strains in the sheet material were compared for the same component.It was found that LDX steels can be formed to high strain levels in tools normally applied for forming ofaustenitic steels, but tool adaptations are needed to comply with the higher strength and springback of thematerial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stainless steels were developed in the early 20th century and are used where both the mechanical properties of steels and corrosion resistance are required. There is continuous research to allow stainless steel components to be produced in a more economical way and be used in more harsh environments. A necessary component in this effort is to correlate the service performance with the production processes. The central theme of this thesis is the mechanical grinding process.  This is commonly used for producing stainless steel components, and results in varied surface properties that will strongly affect their service life. The influence of grinding parameters including abrasive grit size, machine power and grinding lubricant were studied for 304L austenitic stainless steel (Paper II) and 2304 duplex stainless steel (Paper I). Surface integrity was proved to vary significantly with different grinding parameters. Abrasive grit size was found to have the largest influence. Surface defects (deep grooves, smearing, adhesive/cold welding chips and indentations), a highly deformed surface layer up to a few microns in thickness and the generation of high level tensile residual stresses in the surface layer along the grinding direction were observed as the main types of damage when grinding stainless steels. A large degree of residual stress anisotropy is interpreted as being due to mechanical effects dominating over thermal effects. The effect of grinding on stress corrosion cracking behaviour of 304L austenitic stainless steel in a chloride environment was also investigated (Paper III). Depending on the surface conditions, the actual loading by four-point bend was found to deviate from the calculated value using the formula according to ASTM G39 by different amounts. Grinding-induced surface tensile residual stress was suggested as the main factor to cause micro-cracks initiation on the ground surfaces. Grinding along the loading direction was proved to increase the susceptibility to chloride-induced SCC, while grinding perpendicular to the loading direction improved SCC resistance. The knowledge obtained from this work can provide a reference for choosing appropriate grinding parameters when fabricating stainless steel components; and can also be used to help understanding the failure mechanism of ground stainless steel components during service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s− 1 at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneous and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stainless steels are well known to be prone to cold welding and material transfer in sliding contacts and therefore difficult to cold form unless certain precautions as discussed in this paper are taken. In the present study different combinations of tool steels/stainless steels/lubricants has been evaluated with respect to their galling resistance using pin-on-disc testing. The results show that a high galling resistance is favored by a high stainless steel sheet hardness and a blasted stainless steel sheet surface topography. The effect of type of lubricant was found to be more complex. For example, the chlorinated lubricants failed to prevent metal-to-metal contact on a brushed sheet surface but succeeded on a blasted sheet surface of the same stainless steel material. This is believed to be due to a protective tribofilm which is able to form on the blasted surface, but not on the brushed surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The report examines the factors which may be a contributing cause to the problems that are present when ferritic stainless steel are eddy current tested in a warm condition. The work is carried out at Fagersta Stainless AB in Fagersta which manufactures stainless steel wire. In the rolling mill there is an eddy current equipment for detection of surface defects on the wire. The ferritic stainless steels cause a noise when testing and this noise complicates the detection of defects.Because of this, a study was made of how the noise related to factors such as steel grade, temperature, size and velocity. By observing the signal and with the possibilities to change the equipment settings the capability to let a signal filter reduce the noise level were evaluated. Theories about the material's physical properties have also been included, mainly the magnetic properties, electrical conductivity and the material's tendency to oxidize.Results from the tests show that a number of factors do not affect the inductive test significantly and to use a filter to reduce the noise level does not seem to be a viable option. The level of noise does not relate to the presence of superficial particles in form of oxides.The ferritic stainless steels showed some difference in noise level. Which noise level there was did match well with the steels probability for a precipitation of a second phase, and precipitation of austenite may in this case contribute to noise when using an eddy current instrument.The noise is probably due to some physical material property that varies within the thread.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs. The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the first questions to consider when designing a new roll forming line is the number of forming steps required to produce a profile. The number depends on material properties, the cross-section geometry and tolerance requirements, but the tool designer also wants to minimize the number of forming steps in order to reduce the investment costs for the customer. There are several computer aided engineering systems on the market that can assist the tool designing process. These include more or less simple formulas to predict deformation during forming as well as the number of forming steps. In recent years it has also become possible to use finite element analysis for the design of roll forming processes. The objective of the work presented in this thesis was to answer the following question: How should the roll forming process be designed for complex geometries and/or high strength steels? The work approach included both literature studies as well as experimental and modelling work. The experimental part gave direct insight into the process and was also used to develop and validate models of the process. Starting with simple geometries and standard steels the work progressed to more complex profiles of variable depth and width, made of high strength steels. The results obtained are published in seven papers appended to this thesis. In the first study (see paper 1) a finite element model for investigating the roll forming of a U-profile was built. It was used to investigate the effect on longitudinal peak membrane strain and deformation length when yield strength increases, see paper 2 and 3. The simulations showed that the peak strain decreases whereas the deformation length increases when the yield strength increases. The studies described in paper 4 and 5 measured roll load, roll torque, springback and strain history during the U-profile forming process. The measurement results were used to validate the finite element model in paper 1. The results presented in paper 6 shows that the formability of stainless steel (e.g. AISI 301), that in the cold rolled condition has a large martensite fraction, can be substantially increased by heating the bending zone. The heated area will then become austenitic and ductile before the roll forming. Thanks to the phenomenon of strain induced martensite formation, the steel will regain the martensite content and its strength during the subsequent plastic straining. Finally, a new tooling concept for profiles with variable cross-sections is presented in paper 7. The overall conclusions of the present work are that today, it is possible to successfully develop profiles of complex geometries (3D roll forming) in high strength steels and that finite element simulation can be a useful tool in the design of the roll forming process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Setup time reduction facilitate the flexibility needed for just-in-time production. An integrated steel mill with meltshop, continuous caster and hot rolling mill is often operated as decoupled processes. Setup time reduction provides the flexibility needed to reduce buffering, shorten lead times and create an integrated process flow. The interdependency of setup times, process flexibility and integration were analysed through system dynamics simulation. The results showed significant reductions of energy consumption and tied capital. It was concluded that setup time reduction in the hot strip mill can aid process integration and hence improve production economy while reducing environmental impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a physically based model, the microstructural evolution of Nb microalloyed steels during rolling in SSAB Tunnplåt’s hot strip mill was modeled. The model describes the evolution of dislocation density, the creation and diffusion of vacancies, dynamic and static recovery through climb and glide, subgrain formation and growth, dynamic and static recrystallization and grain growth. Also, the model describes the dissolution and precipitation of particles. The impeding effect on grain growth and recrystallization due to solute drag and particles is accounted for. During hot strip rolling of Nb steels, Nb in solid solution retards recrystallization due to solute drag and at lower temperatures strain-induced precipitation of Nb(C,N) may occur which effectively retard recrystallization. The flow stress behavior during hot rolling was calculated where the mean flow stress values were calculated using both the model and measured mill data. The model showed that solute drag has an essential effect on recrystallization during hot rolling of Nb steels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A dislocation model, accurately describing the uniaxial plastic stress-strain behavior of dual phase (DP) steels, is proposed and the impact of martensite content and ferrite grain size in four commercially produced DP steels is analyzed. It is assumed that the plastic deformation process is localized to the ferrite. This is taken into account by introducing a non-homogeneity parameter, f(e), that specifies the volume fraction of ferrite taking active part in the plastic deformation process. It is found that the larger the martensite content the smaller the initial volume fraction of active ferrite which yields a higher initial deformation hardening rate. This explains the high energy absorbing capacity of DP steels with high volume fractions of martensite. Further, the effect of ferrite grain size strengthening in DP steels is important. The flow stress grain size sensitivity for DP steels is observed to be 7 times larger than that for single phase ferrite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The importance of investigating cost reduction in materials and components for solar thermal systems is crucial at the present time. This work focuses on the influence of two different heat exchangers on the performance of a solar thermal system. Both heat exchangers studied are immersed helically coiled, one made with corrugated stainless steel tube, and the other made with finned copper tube with smooth inner surface.A test apparatus has been designed and a simple test procedure applied in order to study heat transfer characteristics and pressure drop of both coils. Thereafter, the resulting experimental data was used to perform a parameter identification of the heat exchangers, in order to obtain a TRNSYS model with its corresponding numerical expression. Also a representative small-scale combisystem model was designed in TRNSYS, in order to study the influence of both heat exchangers on the solar fraction of the system, when working at different flow rates.It has been found that the highest solar fraction is given by the corrugated stainless steel coil, when it works at the lowest flow rate (100 l/hr). For any higher flow rate, the studied copper coil presents a higher solar fraction. The advantageous low flow performance of stainless steel heat exchanger turns out to be beneficial for the particular case of solar thermal systems, where it is well known that low flow collector loops lead to enhanced store stratification, and consequently higher solar fractions.Finally, an optimization of the stainless steel heat exchanger length is carried out, according to economic figures. For the given combisystem model and boundary conditions, the optimum length value is found between 10 and 12 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes  The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This licentiate thesis has the main focus on evaluation of the wear of coated and uncoated polycrystalline cubic boron nitride cutting tool used in cutting operations against hardened steel. And to exam the surface finish and integrity of the work material used. Harder work material, higher cutting speed and cost reductions result in the development of harder and more wear resistance cutting tools. Although PCBN cutting tools have been used in over 30 years, little work have been done on PVD coated PCBN cutting tools. Therefore hard turning and hard milling experiments with PVD coated and uncoated cutting tools have been performed and evaluated. The coatings used in the present study are TiSiN and TiAlN. The wear scar and surface integrity have been examined with help of several different characterization techniques, for example scanning electron microscopy and Auger electron spectroscopy.   The results showed that the PCBN cutting tools used displayed crater wear, flank wear and edge micro chipping. While the influence of the coating on the crater and flank wear was very small and the coating showed a high tendency to spalling. Scratch testing of coated PCBN showed that, the TiAlN coating resulted in major adhesive fractures. This displays the importance of understanding the effect of different types of lapping/grinding processes in the pre-treatment of hard and super hard substrate materials and the amount and type of damage that they can create. For the cutting tools used in turning, patches of a adhered layer, mainly consisting of FexOy were shown at both the crater and flank. And for the cutting tools used in milling a tribofilm consisting of SixOy covered the crater. A combination of tribochemical reactions, adhesive wear and mild abrasive wear is believed to control the flank and crater wear of the PCBN cutting tools. On a microscopic scale the difference phases of the PCBN cutting tool used in turning showed different wear characteristics. The machined surface of the work material showed a smooth surface with a Ra-value in the range of 100-200 nm for the turned surface and 100-150 nm for the milled surface. With increasing crater and flank wear in combination with edge chipping the machined surface becomes rougher and showed a higher Ra-value. For the cutting tools used in milling the tendency to micro edge chipping was significant higher when milling the tools steels showing a higher hard phase content and a lower heat conductivity resulting in higher mechanical and thermal stresses at the cutting edge.