4 resultados para 750803 Urban planning
em Dalarna University College Electronic Archive
Resumo:
The world is urbanizing rapidly with more than half of the global population now living in cities. Improving urban environments for the well-being of the increasing number of urban citizens is becoming one of the most important challenges of the 21st century. Even though it is common that city planners have visions of a ’good urban milieu’, those visions are concerning visual aesthetics or practical matters. The qualitative perspective of sound, such as sonic diversity and acoustic ecology are neglected aspects in architectural design. Urban planners and politicians are therefore largely unaware of the importance of sounds for the intrinsic quality of a place. Whenever environmental acoustics is on the agenda, the topic is noise abatement or noise legislation – a quantitative attenuation of sounds. Some architects may involve acoustical aspects in their work but sound design or acoustic design has yet to develop to a distinct discipline and be incorporated in urban planning.My aim was to investigate to what extent the urban soundscape is likely to improve if modern architectural techniques merge with principles of acoustics. This is an important, yet unexplored, research area. My study explores and analyses the acoustical aspects in urban development and includes interviews with practitioners in the field of urban acoustics, situated in New York City. My conclusion is that to achieve a better understanding of the human living conditions in mega-cities, there is a need to include sonic components into the holistic sense of urban development.
Resumo:
Transportation is seen as one of the major sources of CO2 pollutants nowadays. The impact of increased transport in retailing should not be underestimated. Most previous studies have focused on transportation and underlying trips, in general, while very few studies have addressed the specific affects that, for instance, intra-city shopping trips generate. Furthermore, most of the existing methods used to estimate emission are based on macro-data designed to generate national or regional inventory projections. There is a lack of studies using micro-data based methods that are able to distinguish between driver behaviour and the locational effects induced by shopping trips, which is an important precondition for energy efficient urban planning. The aim of this study is to implement a micro-data method to estimate and compare CO2 emission induced by intra-urban car travelling to a retail destination of durable goods (DG), and non-durable goods (NDG). We estimate the emissions from aspects of travel behaviour and store location. The study is conducted by means of a case study in the city of Borlänge, where GPS tracking data on intra-urban car travel is collected from 250 households. We find that a behavioural change during a trip towards a CO2 optimal travelling by car has the potential to decrease emission to 36% (DG), and to 25% (NDG) of the emissions induced by car-travelling shopping trips today. There is also a potential of reducing CO2 emissions induced by intra-urban shopping trips due to poor location by 54%, and if the consumer selected the closest of 8 existing stores, the CO2 emissions would be reduced by 37% of the current emission induced by NDG shopping trips.
Resumo:
The literature on residences and citizens’ transports has focused on either reforming traffic managing in response to residential relocation or post-evaluation of urban planning policies or the evolution of the urban spatial form. In a city there are hotspots that attract the citizens and most of the transportation in the city arises as the citizens’ movement between their residence and the hotspots. Little scholarly attention has been devoted to the possibility to minimize citizens’ transportation in the city by the urban planning of residential areas. In this paper we propose a method to evaluate the environmental impact (in terms of CO2-emissions) of urban plans of residential areas. The method is illustrated in a Swedish case of a midsize city which is presently preoccupied with urban planning of new residential areas in response to substantial population growth due to immigration. The residential plans aims to increase the compactness and residential density in the current center and sub centers leads to less CO2 emissions compare to urban expansion to the edge of the city. The plans of concentrated apartment buildings are more effective in meeting residential needs and mitigating CO2 emissions than dispersed single-family houses.
Resumo:
The advancement of GPS technology enables GPS devices not only to be used as orientation and navigation tools, but also to track travelled routes. GPS tracking data provides essential information for a broad range of urban planning applications such as transportation routing and planning, traffic management and environmental control. This paper describes on processing the data that was collected by tracking the cars of 316 volunteers over a seven-week period. The detailed information is extracted. The processed data is further connected to the underlying road network by means of maps. Geographical maps are applied to check how the car-movements match the road network. The maps capture the complexity of the car-movements in the urban area. The results show that 90% of the trips on the plane match the road network within a tolerance.