3 resultados para 640305 Production of unrefined precious metal ingots and concentrates
em Dalarna University College Electronic Archive
Resumo:
The features of non-native speech which distinguish it from native speech are often difficult to pin down. It is possible to be a native speaker of any of a vast number of varieties of English. These varieties each have their phonetic characteristics which allow them to be identified by speakers of the varieties in question and by others. The phonetic differences between the accents represented by these varieties are very great. It is impossible to indicate any particular configuration of vowels in the acoustic vowel space or set of consonant articulations which all native-speaker varieties of English have in common and which non-native speakers do not share. This study considers the vowel quality in a single word by native and non-native speakers.
Resumo:
The pulp- and paper production is a very energy intensive industry sector. Both Sweden and the U.S. are major pulpandpaper producers. This report examines the energy and the CO2-emission connected with the pulp- and paperindustry for the two countries from a lifecycle perspective.New technologies make it possible to increase the electricity production in the integrated pulp- andpaper mill through black liquor gasification and a combined cycle (BLGCC). That way, the mill canproduce excess electricity, which can be sold and replace electricity produced in power plants. In thisprocess the by-products that are formed at the pulp-making process is used as fuel to produce electricity.In pulp- and paper mills today the technology for generating energy from the by-product in aTomlinson boiler is not as efficient as it could be compared to the BLGCC technology. Scenarios havebeen designed to investigate the results from using the BLGCC technique using a life cycle analysis.Two scenarios are being represented by a 1994 mill in the U.S. and a 1994 mill in Sweden.The scenariosare based on the average energy intensity of pulp- and paper mills as operating in 1994 in the U.S.and Sweden respectively. The two other scenarios are constituted by a »reference mill« in the U.S. andSweden using state-of-the-art technology. We investigate the impact of varying recycling rates and totalenergy use and CO2-emissions from the production of printing and writing paper. To economize withthe wood and that way save trees, we can use the trees that are replaced by recycling in a biomassgasification combined cycle (BIGCC) to produce electricity in a power station. This produces extra electricitywith a lower CO2 intensity than electricity generated by, for example, coal-fired power plants.The lifecycle analysis in this thesis also includes the use of waste treatment in the paper lifecycle. Both Sweden and theU.S. are countries that recycle paper. Still there is a lot of paper waste, this paper is a part of the countries municipalsolid waste (MSW). A lot of the MSW is landfilled, but parts of it are incinerated to extract electricity. The thesis hasdesigned special scenarios for the use of MSW in the lifecycle analysis.This report is studying and comparing two different countries and two different efficiencies on theBLGCC in four different scenarios. This gives a wide survey and points to essential parameters to specificallyreflect on, when making assumptions in a lifecycle analysis. The report shows that there arethree key parameters that have to be carefully considered when making a lifecycle analysis of wood inan energy and CO2-emission perspective in the pulp- and paper mill in the U.S. and in Sweden. First,there is the energy efficiency in the pulp- and paper mill, then the efficiency of the BLGCC and last theCO2 intensity of the electricity displaced by BIGCC or BLGCC generatedelectricity. It also show that with the current technology that we havetoday, it is possible to produce CO2 free paper with a waste paper amountup to 30%. The thesis discusses the system boundaries and the assumptions.Further and more detailed research, including amongst others thesystem boundaries and forestry, is recommended for more specificanswers.
Resumo:
Throughout the industrial processes of sheet metal manufacturing and refining, shear cutting is widely used for its speed and cost advantages over competing cutting methods. Industrial shears may include some force measurement possibilities, but the force is most likely influenced by friction losses between shear tool and the point of measurement, and are in general not showing the actual force applied to the sheet. Well defined shears and accurate measurements of force and shear tool position are important for understanding the influence of shear parameters. Accurate experimental data are also necessary for calibration of numerical shear models. Here, a dedicated laboratory set-up with well defined geometry and movement in the shear, and high measurability in terms of force and geometry is designed, built and verified. Parameters important to the shear process are studied with perturbation analysis techniques and requirements on input parameter accuracy are formulated to meet experimental output demands. Input parameters in shearing are mostly geometric parameters, but also material properties and contact conditions. Based on the accuracy requirements, a symmetric experiment with internal balancing of forces is constructed to avoid guides and corresponding friction losses. Finally, the experimental procedure is validated through shearing of a medium grade steel. With the obtained experimental set-up performance, force changes as result of changes in studied input parameters are distinguishable down to a level of 1%.