2 resultados para 100% minus sum of oxides

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of ceramic material as refractories in the manufacturing industry is a common practice worldwide. During usage, for example in the production of steel, these materials do experience severe working conditions including high temperatures, low pressures and corrosive environments. This results in lowered service lives and high consumptions of these materials. This, in turn, affects the productivity of the whole steel plant and thereby the cost. In order to investigate how the service life can be improved, studies have been carried out for refractories used in the inner lining of the steel ladles. More specifically, from the slag zone, where the corrosion is most severe. By combining thermodynamic simulations, plant trails and post-mortem studies of the refractories after service, vital information about the behaviour of the slagline refractories during steel refining and the causes of the accelerated wear in this ladle area has been achieved. The results from these studies show that the wear of the slagline refractories of the ladle is initiated at the preheating station, through reduction-oxidation reactions. The degree of the decarburization process is mostly dependent on the preheating fuel or the environment. For refractories without antioxidants, refractory decarburization is slower when coal gas is used in ladle preheating than when a mixture of oil and air is used. In addition, ladle preheating of the refractories without antioxidants leads to direct wear of the slagline refractories. This is due to the total loss of the matrix strength, which results in a sand-like product. Thermal chemical changes that take place in the slagline refractories are due to the MgO-C reaction as well as the formation of liquid phases from impurity oxides. In addition, the decrease in the system pressure during steel refining makes the MgO-C reaction take place at the steel refining temperatures. This reduces the refractory’s resistance to corrosion. This is a serious problem for both the magnesia-carbon and dolomite-carbon refractories. The studies of the reactions between the slagline refractories and the different slag compositions showed that slags rich in iron oxide lead mostly to the oxidation of carbon/graphite in the carbon-containing refractories. This leads to an increased porosity and wettability and therefore an enhanced penetration of slag into the refractory structure. If the slag contains high contents of alumina and or silica (such as the steel refining slag), reactions between the slag components and the dolomite-carbon refractory are promoted. This leads to the formation of low-temperature melting phases such as calcium-aluminates and silicates. The state of these reaction products during steel refining leads to an accelerated wear of the dolomite-carbon refractory. The main products of the reactions between the magnesia-carbon refractory and the steel refining slag are MgAl2O4 spinels, and calcium-aluminates, and silicates. Due to the good refractory properties of MgAl2O4 spinels, the slag corrosion resistance of the magnesiacarbon refractory is promoted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the contemporary tourism industry, the competitive game is between destinations. Tourism operations struggle to remain competitive on the international market and their success depends to a large extent on other complementary and competing tourism organizations at the destination. It is the sum of the total tourism offerings at the destination which determines its attractiveness. This research explores tourism collaboration process as a means of generating destination competitiveness. The focus of the research is on the enhancing factors which contribute to the success of the collaboration and to the development of quality tourism products. The research studies the case of Biking Dalarna, a collaboration of different organizations at five biking destinations in Dalarna, Sweden. Its purpose is to develop biking tourism in the region and to make Dalarna into Sweden’s leading biking destination. It is a qualitative research; the empirical data was collected through in depth interviews with representatives of six Biking Dalarna member organizations. The qualitative data collected from the participants provides inside look into the members reflections and experience of collaborating. The findings of this research demonstrate how collaboration has improved the biking product in Dalarna and promoted solutions to development problems. The research finds the good relationship between the collaborating actors and the involvement and leadership of the regional tourism management organization as the most contributing factors to the success of Biking Dalarna. The research also suggests that a third desired outcome of collaboration, improved marketing attributes was yet to be achieved in the case of Biking Dalarna.