3 resultados para 091007 Manufacturing Robotics and Mechatronics (excl. Automotive Mechatronics)

em Dalarna University College Electronic Archive


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new test method based on multipass scratch testing has been developed for evaluating the mechanical and tribological properties of thin, hard coatings. The proposed test method uses a pin-on-disc tribometer and during testing a Rockwell C diamond stylus is used as the “pin” and loaded against the rotating coated sample. The influence of normal load on the number of cycles to coating damage is investigated and the resulting coating damage mechanisms are evaluated by posttest scanning electron microscopy. The present study presents the test method by evaluating the performance of Ti0.86Si0.14N, Ti0.34Al0.66N, and (Al0.7Cr0.3)2O3 coatings deposited by cathodic arc evaporation on cemented carbide inserts. The results show that the test method is quick, simple, and reproducible and can preferably be used to obtain relevant data concerning the fatigue, wear, chipping, and spalling characteristics of different coating-substrate composites. The test method can be used as a virtually nondestructive test and, for example, be used to evaluate the fatigue and wear resistance as well as the cohesive and adhesive interfacial strength of coated cemented carbide inserts prior to cutting tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The desire to conquer markets through advanced product design and trendy business strategies are still predominant approaches in industry today. In fact, product development has acquired an ever more central role in the strategic planning of companies, and it has extended its influence to R&D funding levels as well. It is not surprising that many national R&D project frameworks within the EU today are dominated by product development topics, leaving production engineering, robotics, and systems on the sidelines. The reasons may be many but, unfortunately, the link between product development and the production processes they cater for are seldom treated in depth. The issue dealt with in this article relates to how product development is applied in order to attain the required production quality levels a company may desire, as well as how one may counter assembly defects and deviations through quantifiable design approaches. It is recognized that product verifications (tests, inspections, etc.) are necessary, but the application of these tactics often result in lead-time extensions and increased costs. Modular architectures improve this by simplifying the verification of the assembled product at module level. Furthermore, since Design for Assembly (DFA) has shown the possibility to identify defective assemblies, it may be possible to detect potential assembly defects already in the product and module design phase. The intention of this paper is to discuss and describe the link between verifications of modular architectures, defects and design for assembly. The paper is based on literature and case studies; tables and diagrams are included with the intention of increasing understanding of the relation between poor designs, defects and product verifications.