2 resultados para 060.2330

em Dalarna University College Electronic Archive


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper summarises the results of using image processing technique to get information about the load of timber trucks before their arrival using digital images or geo tagged images. Once the images are captured and sent to sawmill by drivers from forest, we can predict their arrival time using geo tagged coordinates, count the number of (timber) logs piled up in a truck, identify their type and calculate their diameter. With this information we can schedule and prioritise the inflow and unloading of trucks in the light of production schedules and raw material stocks available at the sawmill yard. It is important to keep all the actors in a supply chain integrated coordinated, so that optimal working routines can be reached in the sawmill yard.   

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.