37 resultados para Heat Solar Energy
Resumo:
Del 1:Innehållsförteckning och korta sammanfattningarDEL 2:Verksamhetsberättelsen för perioden maj 1992 till april 1993 beskriver de arbeten som har gjorts av villasolvärmegruppen på SERC efter den inledande studie (SERC/UCFB-91/0039), där villasolvärmesystem kartlades. Följande arbeten beskrivs:- Utveckling av lågflödessystem och internationella kontakter- Uppbyggnad av värmelaboratorium på SERC- Praktiska test av värmelagringsenheten- Praktiska test av nya systemkomponenter i solvärmekretsen- Datasimulering inkluderande nyutvecklade systemkomponenterI verksamhetsplanen beskrivs huvudmålet för de arbeten som ska utföras under trårsperioden 93 - 96. Mera detaljerat beskrivs de arbeten som ska utföras under budgetåret 1993/94:- Beräkningsprogram för nogrannare dimensionering av finrörsvärmeväxlare- Konstruktion av maskiner för värmeväxlartillverkning- Utveckling av värmeväxlare för tappvarmvatten- Simuleringsberäkningar för hela systemet med PRESIM/TRNSYS.DEL 3:Del 3 innehåller en redovisning av mätresultat för den undersökta kombitanken. Temperaturförloppen på olika höjd i tankens har studerats vid uppvärmning genom solvärmeväxlaren och nedkylning genom tappning av varmvatten. Resultaten diskuteras kvalitativt och redovisas kvantitativt i form av diagram. Mätresultaten på två prototyper av den på SERC utvecklade finrörsvärmeväxlaren redovisas och diskuteras i jämförelse till traditionell värmeväxlare. De erhållna mätresultaten används som ingångsvärden för simuleringsberäkningar med PRESIM/TRNSYS. Problemen med de i PRESIM/TRNSYS befintliga modellerna diskuteras. De utförda modellberäkningarna tillåter en uppskattning av möjliga förbättringar i form av höjd årsverkningsgrad för ett svenskt villasolvärmesystem med kombitank. I del 3 redovisas dessutom de mätningar som har utförts på otika pumpar vilka skulle kunna användas i solfångarkretsen. Sex olika pumpar analyseras och diskuteras. Del 3 har följande rubriker:- Beskrivning av den undersökta lagringstanken- Mätningar på tappvarmvattenväxlare- Mätningar på solvärmeväxlare (kamflänsrör och finrörsvärmeväxlare)- Simuleringsberäkningar- PumpmätningarDEL 4:Del 4 innehåller publicerade rapporter under 1992 och 93 samt patentansökan för SERC?s finrörsvärmeväxlare: - NORTH SUN 1992, Solar Energy at High Latitudes, June 24-26 1992 Trondheim, Norway. Domestic solar heating system - a systematic study i progress Patentansökan på finrorsvärmeväxlare till Patent- och Registreringsverket från 93 01 23. ISES SOLAR WORLD CONGRESS, 23-27 augusti 1993, Budapest, HUNGARY Criteria for cost efficient small scale solar hot water installations.DEL 5:Del 5 hänvisar till rapporterna från IEA Task-1 4 mötena om solfångarsystem i- Hameln, Tyskland, augusti 1992 och- Rom, Italien, januari 1993.I rapporterna beskrivs aktiviteten inom den internationella arbetsgruppen speciellt med hänsyn på utveckling av villasolvärmesystem. I Rom presenterades principlösningen för den på SERC utvecklade finrörsvärmeväxlare. De har publicerats separat som nr 42 och 46 i SERCs rapportserie.
Resumo:
Development of an infrastructure for Brundtland Renewable Energy Network - BREN är ettEuropean Commission Alterner Project med Contract no XVII/4. 1030/Z96-032.Projektet har sitt ursprung i UN rapporten “Our Common Future” 1989. Grundläggande för att nå de mål som rapporten föreslog var att förändra och minska användningen av energi. I Danmark tog man fram en handlingsplan för hur energiförbrukningen skulle kunna minskas “Energi 2000 - Handlingsplan för en bäredygtig udvikling”. De danska och schleswigholstenske energiministrarna överenskom att starta vars ett energisparprojekt i en mindre stad. Projektet kallades “Brundtlandby” och de två första var Toftlund i Sönderjylland och Bredstedt i Nordfriesland. Efter en kort tid anslöt sig ytterligare två tyska städer, Rheinsberg och Viernheim, samt Rajec i Slovakien. Mellan städerna formades ett nätverk för att utbyta information. Nätverket, Brundtland City Project, var inspirerande för de ingående städerna i det fortsatta arbetet med energisparåtgärder. Brundtland City Project presenterades på en internationell konferens “Cities and Energy” i Trondheim, Norge, december 1995. Projektet väckte intresse och det föreslogs att nätverket, som ett pilotprojekt, skulle utvecklas i norra Europa för att senare utökas med andra europeiska länder. En ledningsgrupp tillsattes medrepresentanter från de nordiska länderna.En ansökan sändes till European Commission, Alterner Program, och denna beviljades i juli 1996. Projektet indelades i (9 Activities. Aktivitet 1, var att sammanfatta erfarenheterna av Brundtland City Project i Toftlund, Danmark och Brundtland Cities Nätverket i Sovakien, Tyskland och Danmark. Den nordiska delen startar med Aktivitet 2, vilket var att engagera kommuner/städer i Finland, Norge och Sverige. Som samordnade för den svenska delen utsågs Solar Energy Research Center SERC vid Högskolan Dalarna. Projektet presenterades vid ett seminarium den 30 september för representanter för Borlänge och Falu kommuner. Den 10 december 1996 accepterade de två kommunerna inbjudan att ingå i det nordiska nätverket. Uppgiftslämnare i Borlänge kommun har varit Pelle Helje, Borlänge Energi och i Falu kommun Anders Goop, stadsbyggnadskontoret samt för underlag till Newsletter Jan Kaans, fastighetskontoret.Rapportering till Brundtland Center Danmark av arbetet i Borlänge och Falu kommuner har skett vid tre tillfällen, Aktiviteterna 2-5, 1997-12-16, Aktivitererna 6-7 inkluderande delar av aktiviterna 8-9, 1998-05-03 samt underlag till Newsletter, 1998-07-01. De nordiska rapporterna har sammanställts vid Brundtland Center Danmark för rapportering till European Commission. Gemensamt språk har varit engelska. Efter rapportering av aktiviterna 2 - 5 inbjöds till ett projektmöte och en studiedag vid Brundtland Center den 23 och 24 mars 1998. Det var första tillfället deltagarna i projektet strålade samman och nätverket tog därmed en mera konkret form. Man beslutade också att nästa projektmöte skulle hållas i Borlänge i augusti 1998 med Borlänge Energi och Solar Energy Research Center SERC som organisatörer. Beroende på att Brundtland Centre Danmark upplösts av ekonomiska skäl blev projektmötet i Borlänge inställt.Sammanställning av Final Report, October 1998, har utförts av Esbensen Consultants.Framtida utveckling av nätverketArbetet med Brundtland City Network avses fortsätta som ett “EU Thermie B-project” och nätverket kommer att utökas med fyra nya Brundtlandstäder från Österrike, Tyskland Italien och Storbritanien. Dessutom kommer samhället Putja i Estland att ingå i nätverket men detta financieras av EU-Phare programme.
Resumo:
Development of an infrastructure for Brundtland Renewable Energy Network - BREN is a European Commission Alterner Project with Contract no XVII/4. 1030/Z96-032.The project has its origin in the UN-report “Our Common Future”, 1989. A change in and reduction of the use of energy was fundamental in order to reach the goals which the report proposed. Denmark decided on an action plan on how energy consumption could be reduced “Energi 2000 - Handlingsplan för en bäredygtig udvikling”. The ministries of energy in Denmark and Schleswig Holstein both agreed to start an energy saving project in a smaller town. The project was called “Brundtlandby” and the two first were Toftlund in South Jutland and Bredstedt in North Friesland. After a short period a further two German Cities, Rheinsberg and Viernheim, and Rajec in Slovakia joined the group. A network for the exchange of knowledge and experience between the cities was formed. The network, Brundtland City Project, inspired the participating cities in the continuing work with energy saving measures. The Brundtland City Project was presented at an international conference “Cities and Energy” in Trondheim, Norway,in December 1995. Great interest was shown in the project and it was decided that a network should be developed in northern European countries as a pilot project to be enlarged with other European countries later on. A steering committee was formed with representatives from the nordic countries.An application was sent to the European Commission, Alterner Program, and was approved in Juli 1996. The project was subdivided into nine activities. Activity 1, consisted of summarising the experiences of the Brundtland City Project in Toftlund, Denmark and the Brundtland Cities network in Slovakia, Germany and Denmark. The Scandinavian part started with Activity 2, to engage municipalities/cities in Finland, Norway and Sweden in the project. The Solar Energy Research Center, SERC, Högskolan Dalarna was appointed as co-ordinator for the Swedish part. The project was presented at a seminar on the 30th September for representatives from the municipalities of Borlänge and Falun. On the 10th of December 1996 the two municipalities accepted the invitation to join the Northern network. Pelle Helje, Borlänge Energi, has been informant for the municipality of Borlänge and Anders Goop, Department of Urban Planninginformant for the municipality of Falun with Jan Kaans, Estates department providing information to the basis for the Newsletter.Reports on the work in Borlänge and Falun municipalities have been made to Brundtland Center Denmark on three occasions; Activities 2-5, 16-12-1997, Activities 6-7, including parts of activities 8-9, 03-03-1998, and the basis for the Newsletter, 01-07-1998. The Nordic reports have been compiled at the Brundtland Center Denmark for submission to the European Commission. English has been the common language. After the report of activities 2 - 5 the participants wereinvited to a project meeting and a workshop at Brundtland Center the 23rd and 24th March 1998.This was the first occasion the participants in the project met and the network thus took a moreconcrete form. It also was decided that the next meeting should be in Borlänge in August 1998,with Borlänge Energi and Solar Energy Research Center SERC as organisers. As BrundtlandCentre Denmark was wound up for financial reasons, the project meeting in Borlänge wascancelled.Compilation of the Final Report was carried out by Esbensen Consultants in October 1998Future development of the networkIt is intended to continue the work with the Brundtland City Network as an “EU Thermie Bproject”and the network will be enlarged with the addition of four new Brundtland Cities from Austria, Germany, Italy and Great Britain. In addition the village of Putja in Estonia will join the network but this will be financed by the EU-Phare programme.
Resumo:
In recent years the number of bicycles with e-motors has been increased steadily. Within the pedelec – bikes where an e-motor supports the pedaling – a special group of transportation bikes has developed. These bikes have storage boxes in addition to the basic parts of a bike. Due to the space available on top of those boxes it is possible to install a PV system to generate electricity which could be used to recharge the battery of the pedelec. Such a system would lead to grid independent charging of the battery and to the possibility of an increased range of motor support. The feasibility of such a PV system is investigated for a three wheeled pedelec delivered by the company BABBOE NORDIC.The measured data of the electricity generation of this mobile system is compared to the possible electricity generation of a stationary system.To measure the consumption of the pedelec different tracks are covered, and the energy which is necessary to recharge the bike battery is measured using an energy logger. This recharge energy is used as an indirect measure of the electricity consumption. A PV prototype system is installed on the bike. It is a simple PV stand alone system consisting of PV panel, charge controller with MPP tracker and a solar battery. This system has the task to generate as much electricity as possible. The produced PV current and voltage aremeasured and documented using a data logger. Afterwards the average PV power is calculated. To compare the produced electricity of the on-bike system to that of a stationary system, the irradiance on the latter is measured simultaneously. Due to partial shadings on the on-bike PV panel, which are caused by the driver and some other bike parts, the average power output during riding the bike is very low. It is too low to support the motor directly. In case of a similar installation as the PV prototype system and the intention always to park the bike on a sunny spot an on-bike system could generate electricity to at least partly recharge a bike battery during one day. The stationary PV system using the same PV panel could have produced between 1.25 and 8.1 times as much as the on-bike PV system. Even though the investigation is done for a very specific case it can be concluded that anon-bike PV system, using similar components as in the investigation, is not feasible to recharge the battery of a pedelec in an appropriate manner. The biggest barrier is that partial shadings on the PV panel, which can be hardly avoided during operation and parking, result in a significant reduction of generated electricity. Also the installation of the on-bike PV system would lead to increased weight of the whole bike and the need for space which is reducing the storage capacity. To use solar energy for recharging a bike battery an indirect way is giving better results. In this case a stationary PV stand alone system is used which is located in a sunny spot without shadings and adjusted to use the maximum available solar energy. The battery of the bike is charged using the corresponding charger and an inverter which provides AC power using the captured solar energy.
Resumo:
The aim of this study was to investigate electricity supply solutions for an educationalcenter that is being built in Chonyonyo Tanzania. Off-grid power generation solutions andfurther optimization possibilities were studied for the case.The study was done for Engineers Without Borders in Sweden. Who are working withMavuno Project on the educational center. The school is set to start operating in year 2015with 40 girl students in the beginning. The educational center will help to improve genderequality by offering high quality education in a safe environment for girls in rural area.It is important for the system to be economically and environmentally sustainable. Thearea has great potential for photovoltaic power generation. Thus PV was considered as theprimary power generation and a diesel generator as a reliable backup. The system sizeoptimization was done with HOMER. For the simulations HOMER required componentdata, weather data and load data. Common components were chose with standardproperties, the loads were based on load estimations from year 2011 and the weather datawas acquired from NASA database. The system size optimization result for this base casewas a system with 26 kW PW; 5.5 kW diesel generator, 15 kW converter and 112 T-105batteries. The initial cost of the system was 55 875 €, the total net present cost 92 121 €and the levelized cost of electricity 0.264 €/kWh.In addition three optimization possibilities were studied. First it was studied how thesystem should be designed and how it would affect the system size to have night loads(security lights) use DC and could the system then be extended in blocks. As a result it wasfound out that the system size could be decreased as the inverter losses would be avoided.Also the system extension in blocks was found to be possible. The second study was aboutinverter stacking where multiple inverters can work as one unit. This type of connectionallows only the required number of inverters to run while shutting down the excess ones.This would allow the converter-unit to run with higher efficiency and lower powerconsumption could be achieved. In future with higher loads the system could be easilyextendable by connecting more inverters either in parallel or series depending on what isneeded. Multiple inverters would also offer higher reliability than using one centralizedinverter. The third study examined how the choice of location for a centralized powergeneration affects the cable sizing for the system. As a result it was found that centralizedpower generation should be located close to high loads in order to avoid long runs of thickcables. Future loads should also be considered when choosing the location. For theeducational center the potential locations for centralized power generation were found outto be close to the school buildings and close to the dormitories.
Resumo:
Projektet omfattade undersökning och framtagande av ett solcellssystem med förmåga att försörja ett FTX-system i ett flerbostadshus från miljonprogrammet med el. För att kunna bedöma storlek och utformning av komponenter har information tagits genom: Informationssökning via databaser, kurslitteratur och intervjuer Simuleringar av solceller i datorprogrammet PVSYST Modulering av ventilationskanaler i datorprogrammet MagiCAD Syftet var främst att undersöka om det gick att få fram ett teoretiskt fungerande system med avseende på både solceller och ventilation. Beroende på vad resultatet blev skulle även ekonomin i projektet undersökas. Undersökningen visade att det teoretiskt ska gå att installera solceller för elframställning som klarar av att täcka FTX-systemets elbehov på årsbasis. Solcellerna bedöms även producera tillräckligt med el för viss övrig elkrävande utrustning under stora delar av året. Det visade sig även att det skulle gå att få solcellerna ekonomiskt lönsamma om en kalkyltid på 14 år används. Metoden som använts för dessa resultat är noga beskriven och är med små förändringar tillämpbar för ett stort antal byggnader i det svenska byggnadsbeståndet. En viktig slutsats är att om fastighetsägarna kan se 15 år fram i tiden för en investering i solenergi, skulle det innebära inte bara miljömässiga utan även ekonomiska vinster. Det finns redan idag kunnande, teknik och produkter för att utvinna en stor del av fastigheternas elbehov genom solens energi.
Resumo:
The Intelligent Algorithm is designed for theusing a Battery source. The main function is to automate the Hybrid System through anintelligent Algorithm so that it takes the decision according to the environmental conditionsfor utilizing the Photovoltaic/Solar Energy and in the absence of this, Fuel Cell energy isused. To enhance the performance of the Fuel Cell and Photovoltaic Cell we used batterybank which acts like a buffer and supply the current continuous to the load. To develop the main System whlogic based controller was used. Fuzzy Logic based controller used to develop this system,because they are chosen to be feasible for both controlling the decision process and predictingthe availability of the available energy on the basis of current Photovoltaic and Battery conditions. The Intelligent Algorithm is designed to optimize the performance of the system and to selectthe best available energy source(s) in regard of the input parameters. The enhance function of these Intelligent Controller is to predict the use of available energy resources and turn on thatparticular source for efficient energy utilization. A fuzzy controller was chosen to take thedecisions for the efficient energy utilization from the given resources. The fuzzy logic basedcontroller is designed in the Matlab-Simulink environment. Initially, the fuzzy based ruleswere built. Then MATLAB based simulation system was designed and implemented. Thenthis whole proposed model is simulated and tested for the accuracy of design and performanceof the system.