19 resultados para storage losses
Resumo:
This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as well as use of internal and external heat exchangers for DHW preparation were investigated as well as sensor height for charging of the DHW zone in the store. The temperature in this zone was varied to ensure the same DHW comfort was achieved in all cases. The results show that the four pipe connection results in 9% improvement in SPF compared to three pipe and that the external heat exchanger for DHW preparation leads to a 2% improvement compared to the reference case. Additionally the sensor height for charging the DHW zone of the store should not be too low, otherwise system performance is adversely affected
Resumo:
Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family house, while the unit under test has to act autonomously to cover the heat demand during a representative test cycle. Within the work package 2 of the MacSheep project these similar – but different – test methods were harmonized and improved. The work undertaken includes: • Harmonization of the physical boundaries of the unit under test. • Harmonization of the boundary conditions of climate and load. • Definition of an approach to reach identical space heat load in combination with an autonomous control of the space heat distribution by the unit under test. • Derivation and validation of new six day and a twelve day test profiles for direct extrapolation of test results. The new harmonized test method combines the advantages of the different methods that existed before the MacSheep project. The new method is a benchmark test, which means that the load for space heating and domestic hot water preparation will be identical for all tested systems, and that the result is representative for the performance of the system over a whole year. Thus, no modelling and simulation of the tested system is needed in order to obtain the benchmark results for a yearly cycle. The method is thus also applicable to products for which simulation models are not available yet. Some of the advantages of the new whole system test method and performance rating compared to the testing and energy rating of single components are: • Interaction between the different components of a heating system, e.g. storage, solar collector circuit, heat pump, control, etc. are included and evaluated in this test. • Dynamic effects are included and influence the result just as they influence the annual performance in the field. • Heat losses are influencing the results in a more realistic way, since they are evaluated under "real installed" and representative part-load conditions rather than under single component steady state conditions. The described method is also suited for the development process of new systems, where it replaces time-consuming and costly field testing with the advantage of a higher accuracy of the measured data (compared to the typically used measurement equipment in field tests) and identical, thus comparable boundary conditions. Thus, the method can be used for system optimization in the test bench under realistic operative conditions, i.e. under relevant operating environment in the lab. This report describes the physical boundaries of the tested systems, as well as the test procedures and the requirements for both the unit under test and the test facility. The new six day and twelve day test profiles are also described as are the validation results.
Resumo:
In boreal forest regions, a great portion of forest tree seedlings are stored indoors in late autumn to prevent seedlings from outdoor winter damage. For seedlings to be able to survive in storage it is crucial that they store well and can cope with the dark and cold storage environment. The aim of this study was to search for genes that can determine the vitality status of Norway spruce (Picea abies (L.) Karst.) seedlings during frozen storage. Furthermore, the sensitivity of the ColdNSure (TM) test, a gene activity test that predicts storability was assessed. The storability of seedlings was tested biweekly by evaluating damage with the gene activity test and the electrolyte leakage test after freezing seedlings to -25 A degrees C (the SELdiff-25 method). In parallel, seedlings were frozen stored at -3 A degrees C. According to both methods, seedlings were considered storable from week 41. This also corresponded to the post storage results determined at the end of the storage period. In order to identify vitality indicators, Next Generation Sequencing (NGS) was performed on bud samples collected during storage. Comparing physiological post storage data to gene analysis data revealed numerous vitality related genes. To validate the results, a second trial was performed. In this trial, gene activity was better in predicting seedling storability than the conventional freezing test; this indicates a high sensitivity level of this molecular assay. For multiple indicators a clear switch between damaged and vital seedlings was observed. A collection of indicators will be used in the future development of a commercial vitality test.
Resumo:
Bin planning (arrangements) is a key factor in the timber industry. Improper planning of the storage bins may lead to inefficient transportation of resources, which threaten the overall efficiency and thereby limit the profit margins of sawmills. To address this challenge, a simulation model has been developed. However, as numerous alternatives are available for arranging bins, simulating all possibilities will take an enormous amount of time and it is computationally infeasible. A discrete-event simulation model incorporating meta-heuristic algorithms has therefore been investigated in this study. Preliminary investigations indicate that the results achieved by GA based simulation model are promising and better than the other meta-heuristic algorithm. Further, a sensitivity analysis has been done on the GA based optimal arrangement which contributes to gaining insights and knowledge about the real system that ultimately leads to improved and enhanced efficiency in sawmill yards. It is expected that the results achieved in the work will support timber industries in making optimal decisions with respect to arrangement of storage bins in a sawmill yard.