17 resultados para heat pump


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the aging building stock of Europe, there is great potential of saving energy through renovation and upgrading to modern standards, and to thereby approach the internationally set goals of lower energy use. This paper concerns the planned renovation of the building envelope and HVAC systems in a multi-family house in Ludwigsburg, Germany. Five systemic HVAC solutions were compared, with special focus on two systems: A) Balanced ventilation with HRC + Micro heat pump, and B) Forced exhaust ventilation + Heat pump with exhaust air HRC + Ventilation radiators. Given the predicted heating demand and ventilation rate of the house after renovation, the performance of the two systems was compared, alongside three common systems for reference. Calculations were made using TMF Energi, a tool developed by SP Technical Research Institute of Sweden.    Both systems A and B were found to have the lowest electrical energy use together with the ground source heat pump system for the assumed conditions. For other assumptions, including different climate and degree of insulation, some differences between these three systems were noted. Most significant is the increased electrical use of system B for higher heating loads due to limitations in the power available from the heat source, exhaust air, which is dependent on the ventilation rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, dynamic simulation was used to compare the energy performance of three innovativeHVAC systems: (A) mechanical ventilation with heat recovery (MVHR) and micro heat pump, (B) exhaustventilation with exhaust air-to-water heat pump and ventilation radiators, and (C) exhaust ventilationwith air-to-water heat pump and ventilation radiators, to a reference system: (D) exhaust ventilation withair-to-water heat pump and panel radiators. System A was modelled in MATLAB Simulink and systems Band C in TRNSYS 17. The reference system was modelled in both tools, for comparison between the two.All systems were tested with a model of a renovated single family house for varying U-values, climates,infiltration and ventilation rates.It was found that A was the best system for lower heating demand, while for higher heating demandsystem B would be preferable. System C was better than the reference system, but not as good as A or B.The difference in energy consumption of the reference system was less than 2 kWh/(m2a) betweenSimulink and TRNSYS. This could be explained by the different ways of handling solar gains, but also bythe fact that the TRNSYS systems supplied slightly more than the ideal heating demand.