20 resultados para battery-powered
Resumo:
Background: A mobile device test battery, consisting of a patient diary collection section with disease-related questions and a fine motor test section (including spiral drawing tasks), was used by 65 patients with advanced Parkinson's disease (PD)(treated with intraduodenal levodopa/carbidopa gel infusion, Duodopa®, or candidates for this treatment) on 10439 test occasions in their home environments. On each occasion, patients traced three pre-drawn Archimedes spirals using an ergonomic stylus and self-assessed their motor function on a global Treatment Response Scale (TRS) ranging from -3 = very 'off' to 0 = 'on' to +3 = very dyskinetic. The spirals were processed by a computer-based method that generates a "spiral score" representing the PD-related drawing impairment. The scale for the score was based on a modified Bain & Findley rating scale in the range from 0 = no impairment to 5 = moderate impairment to 10 = extremely severe impairment. Objective: To analyze the test battery data for the purpose to find differences in spiral drawing performance of PD patients in relation to their self-assessments of motor function. Methods: Three motor states were used in the analysis; OFF state (including moderate and very 'off'), ON state ('on') and a dyskinetic (DYS) state (moderate and very dyskinetic). In order to avoid the problem of multiple test occasions per patient, 200 random samples of single test occasions per patient were drawn. One-way analysis of variance, ANOVA, test followed by Tukey multiple comparisons test was used to test if mean values of spiral test parameters, i.e. the spiral score and drawing completion times (in seconds), were different among the three motor states. Statistical significance was set at p<0.05. To investigate changes in the spiral score over the time-of-day test sessions for the three motor states, plots of statistical summaries were inspected. Results: The mean spiral score differed significantly across the three self-assessed motor states (p<0.001, ANOVA test). Tukey post-hoc comparisons indicate that the mean spiral score (mean ± SD; [95% CI for mean]) in DYS state (5.2 ± 1.8; [5.12, 5.28]) was higher than the mean spiral score in OFF (4.3 ± 1.7; [4.22, 4.37]) and ON (4.2 ± 1.7; [4.17, 4.29]) states. The mean spiral score was also significantly different among individual TRS values of slightly 'off' (4.02 ± 1.63), 'on' (4.07 ± 1.65) and slightly dyskinetic (4.6 ± 1.71), (p<0.001). There were no differences in drawing completion times among the three motor states (p=0.509). In the OFF and ON states, patients drew slightly more impaired spirals in the afternoon whereas in the DYS state the spiral drawing performance was more impaired in the morning. Conclusion: It was found that when patients considered themselves as being dyskinetic spiral drawing was more impaired (nearly one unit change in a 0-10 scale) compared to when they considered themselves as being 'off' and 'on'. The spiral drawing at patients that self-assessed their motor state as dyskinetic was slightly more impaired in the morning hours, between 8 and 12 o'clock, a situation possibly caused by the morning dose effect.
Resumo:
Parkinson’s disease (PD) is an increasing neurological disorder in an aging society. The motor and non-motor symptoms of PD advance with the disease progression and occur in varying frequency and duration. In order to affirm the full extent of a patient’s condition, repeated assessments are necessary to adjust medical prescription. In clinical studies, symptoms are assessed using the unified Parkinson’s disease rating scale (UPDRS). On one hand, the subjective rating using UPDRS relies on clinical expertise. On the other hand, it requires the physical presence of patients in clinics which implies high logistical costs. Another limitation of clinical assessment is that the observation in hospital may not accurately represent a patient’s situation at home. For such reasons, the practical frequency of tracking PD symptoms may under-represent the true time scale of PD fluctuations and may result in an overall inaccurate assessment. Current technologies for at-home PD treatment are based on data-driven approaches for which the interpretation and reproduction of results are problematic. The overall objective of this thesis is to develop and evaluate unobtrusive computer methods for enabling remote monitoring of patients with PD. It investigates first-principle data-driven model based novel signal and image processing techniques for extraction of clinically useful information from audio recordings of speech (in texts read aloud) and video recordings of gait and finger-tapping motor examinations. The aim is to map between PD symptoms severities estimated using novel computer methods and the clinical ratings based on UPDRS part-III (motor examination). A web-based test battery system consisting of self-assessment of symptoms and motor function tests was previously constructed for a touch screen mobile device. A comprehensive speech framework has been developed for this device to analyze text-dependent running speech by: (1) extracting novel signal features that are able to represent PD deficits in each individual component of the speech system, (2) mapping between clinical ratings and feature estimates of speech symptom severity, and (3) classifying between UPDRS part-III severity levels using speech features and statistical machine learning tools. A novel speech processing method called cepstral separation difference showed stronger ability to classify between speech symptom severities as compared to existing features of PD speech. In the case of finger tapping, the recorded videos of rapid finger tapping examination were processed using a novel computer-vision (CV) algorithm that extracts symptom information from video-based tapping signals using motion analysis of the index-finger which incorporates a face detection module for signal calibration. This algorithm was able to discriminate between UPDRS part III severity levels of finger tapping with high classification rates. Further analysis was performed on novel CV based gait features constructed using a standard human model to discriminate between a healthy gait and a Parkinsonian gait. The findings of this study suggest that the symptom severity levels in PD can be discriminated with high accuracies by involving a combination of first-principle (features) and data-driven (classification) approaches. The processing of audio and video recordings on one hand allows remote monitoring of speech, gait and finger-tapping examinations by the clinical staff. On the other hand, the first-principles approach eases the understanding of symptom estimates for clinicians. We have demonstrated that the selected features of speech, gait and finger tapping were able to discriminate between symptom severity levels, as well as, between healthy controls and PD patients with high classification rates. The findings support suitability of these methods to be used as decision support tools in the context of PD assessment.
Resumo:
OBJECTIVES: To develop a method for objective assessment of fine motor timing variability in Parkinson’s disease (PD) patients, using digital spiral data gathered by a touch screen device. BACKGROUND: A retrospective analysis was conducted on data from 105 subjects including65 patients with advanced PD (group A), 15 intermediate patients experiencing motor fluctuations (group I), 15 early stage patients (group S), and 10 healthy elderly subjects (HE) were examined. The subjects were asked to perform repeated upper limb motor tasks by tracing a pre-drawn Archimedes spiral as shown on the screen of the device. The spiral tracing test was performed using an ergonomic pen stylus, using dominant hand. The test was repeated three times per test occasion and the subjects were instructed to complete it within 10 seconds. Digital spiral data including stylus position (x-ycoordinates) and timestamps (milliseconds) were collected and used in subsequent analysis. The total number of observations with the test battery were as follows: Swedish group (n=10079), Italian I group (n=822), Italian S group (n = 811), and HE (n=299). METHODS: The raw spiral data were processed with three data processing methods. To quantify motor timing variability during spiral drawing tasks Approximate Entropy (APEN) method was applied on digitized spiral data. APEN is designed to capture the amount of irregularity or complexity in time series. APEN requires determination of two parameters, namely, the window size and similarity measure. In our work and after experimentation, window size was set to 4 and similarity measure to 0.2 (20% of the standard deviation of the time series). The final score obtained by APEN was normalized by total drawing completion time and used in subsequent analysis. The score generated by this method is hence on denoted APEN. In addition, two more methods were applied on digital spiral data and their scores were used in subsequent analysis. The first method was based on Digital Wavelet Transform and Principal Component Analysis and generated a score representing spiral drawing impairment. The score generated by this method is hence on denoted WAV. The second method was based on standard deviation of frequency filtered drawing velocity. The score generated by this method is hence on denoted SDDV. Linear mixed-effects (LME) models were used to evaluate mean differences of the spiral scores of the three methods across the four subject groups. Test-retest reliability of the three scores was assessed after taking mean of the three possible correlations (Spearman’s rank coefficients) between the three test trials. Internal consistency of the methods was assessed by calculating correlations between their scores. RESULTS: When comparing mean spiral scores between the four subject groups, the APEN scores were different between HE subjects and three patient groups (P=0.626 for S group with 9.9% mean value difference, P=0.089 for I group with 30.2%, and P=0.0019 for A group with 44.1%). However, there were no significant differences in mean scores of the other two methods, except for the WAV between the HE and A groups (P<0.001). WAV and SDDV were highly and significantly correlated to each other with a coefficient of 0.69. However, APEN was not correlated to neither WAV nor SDDV with coefficients of 0.11 and 0.12, respectively. Test-retest reliability coefficients of the three scores were as follows: APEN (0.9), WAV(0.83) and SD-DV (0.55). CONCLUSIONS: The results show that the digital spiral analysis-based objective APEN measure is able to significantly differentiate the healthy subjects from patients at advanced level. In contrast to the other two methods (WAV and SDDV) that are designed to quantify dyskinesias (over-medications), this method can be useful for characterizing Off symptoms in PD. The APEN was not correlated to none of the other two methods indicating that it measures a different construct of upper limb motor function in PD patients than WAV and SDDV. The APEN also had a better test-retest reliability indicating that it is more stable and consistent over time than WAV and SDDV.
Resumo:
The aim of this study was to investigate if a telemetry test battery can be used to measure effects of Parkinson’s disease (PD) treatment intervention and disease progression in patients with fluctuations. Sixty-five patients diagnosed with advanced PD were recruited in an open longitudinal 36-month study; 35 treated with levodopa-carbidopa intestinal gel (LCIG) and 30 were candidates for switching from oral PD treatment to LCIG. They utilized a test battery, consisting of self-assessments of symptoms and fine motor tests (tapping and spiral drawings), four times per day in their homes during week-long test periods. The repeated measurements were summarized into an overall test score (OTS) to represent the global condition of the patient during a test period. Clinical assessments included ratings on Unified PD Rating Scale (UPDRS) and 39-item PD Questionnaire (PDQ-39) scales. In LCIG-naïve patients, mean OTS compared to baseline was significantly improved from the first test period on LCIG treatment until month 24. In LCIG-non-naïve patients, there were no significant changes in mean OTS until month 36. The OTS correlated adequately with total UPDRS (rho = 0.59) and total PDQ-39 (0.59). Responsiveness measured as effect size was 0.696 and 0.536 for OTS and UPDRS respectively. The trends of the test scores were similar to the trends of clinical rating scores but dropout rate was high. Correlations between OTS and clinical rating scales were adequate indicating that the test battery contains important elements of the information of well-established scales. The responsiveness and reproducibility were better for OTS than for total UPDRS.
Resumo:
Research objectives Poker and responsible gambling both entail the use of the executive functions (EF), which are higher-level cognitive abilities. The main objective of this work was to assess if online poker players of different ability show different performances in their EF and if so, which functions are the most discriminating ones. The secondary objective was to assess if the EF performance can predict the quality of gambling, according to the Gambling Related Cognition Scale (GRCS), the South Oaks Gambling Screen (SOGS) and the Problem Gambling Severity Index (PGSI). Sample and methods The study design consisted of two stages: 46 Italian active players (41m, 5f; age 32±7,1ys; education 14,8±3ys) fulfilled the PGSI in a secure IT web system and uploaded their own hand history files, which were anonymized and then evaluated by two poker experts. 36 of these players (31m, 5f; age 33±7,3ys; education 15±3ys) accepted to take part in the second stage: the administration of an extensive neuropsychological test battery by a blinded trained professional. To answer the main research question we collected all final and intermediate scores of the EF tests on each player together with the scoring on the playing ability. To answer the secondary research question, we referred to GRCS, PGSI and SOGS scores. We determined which variables that are good predictors of the playing ability score using statistical techniques able to deal with many regressors and few observations (LASSO, best subset algorithms and CART). In this context information criteria and cross-validation errors play a key role for the selection of the relevant regressors, while significance testing and goodness-of-fit measures can lead to wrong conclusions. Preliminary findings We found significant predictors of the poker ability score in various tests. In particular, there are good predictors 1) in some Wisconsin Card Sorting Test items that measure flexibility in choosing strategy of problem-solving, strategic planning, modulating impulsive responding, goal setting and self-monitoring, 2) in those Cognitive Estimates Test variables related to deductive reasoning, problem solving, development of an appropriate strategy and self-monitoring, 3) in the Emotional Quotient Inventory Short (EQ-i:S) Stress Management score, composed by the Stress Tolerance and Impulse Control scores, and in the Interpersonal score (Empathy, Social Responsibility, Interpersonal Relationship). As for the quality of gambling, some EQ-i:S scales scores provide the best predictors: General Mood for the PGSI; Intrapersonal (Self-Regard; Emotional Self-Awareness, Assertiveness, Independence, Self-Actualization) and Adaptability (Reality Testing, Flexibility, Problem Solving) for the SOGS, Adaptability for the GRCS. Implications for the field Through PokerMapper we gathered knowledge and evaluated the feasibility of the construction of short tasks/card games in online poker environments for profiling users’ executive functions. These card games will be part of an IT system able to dynamically profile EF and provide players with a feedback on their expected performance and ability to gamble responsibly in that particular moment. The implementation of such system in existing gambling platforms could lead to an effective proactive tool for supporting responsible gambling.