20 resultados para Traffic Conflict.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

GPS tracking of mobile objects provides spatial and temporal data for a broad range of applications including traffic management and control, transportation routing and planning. Previous transport research has focused on GPS tracking data as an appealing alternative to travel diaries. Moreover, the GPS based data are gradually becoming a cornerstone for real-time traffic management. Tracking data of vehicles from GPS devices are however susceptible to measurement errors – a neglected issue in transport research. By conducting a randomized experiment, we assess the reliability of GPS based traffic data on geographical position, velocity, and altitude for three types of vehicles; bike, car, and bus. We find the geographical positioning reliable, but with an error greater than postulated by the manufacturer and a non-negligible risk for aberrant positioning. Velocity is slightly underestimated, whereas altitude measurements are unreliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to analyze the performance of the Histograms of Oriented Gradients (HOG) as descriptors for traffic signs recognition. The test dataset consists of speed limit traffic signs because of their high inter-class similarities.   HOG features of speed limit signs, which were extracted from different traffic scenes, were computed and a Gentle AdaBoost classifier was invoked to evaluate the different features. The performance of HOG was tested with a dataset consisting of 1727 Swedish speed signs images. Different numbers of HOG features per descriptor, ranging from 36 features up 396 features, were computed for each traffic sign in the benchmark testing. The results show that HOG features perform high classification rate as the Gentle AdaBoost classification rate was 99.42%, and they are suitable to real time traffic sign recognition. However, it is found that changing the number of orientation bins has insignificant effect on the classification rate. In addition to this, HOG descriptors are not robust with respect to sign orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper aims to present three new methods for color detection and segmentation of road signs. The images are taken by a digital camera mounted in a car. The RGB images are converted into IHLS color space, and new methods are applied to extract the colors of the road signs under consideration. The methods are tested on hundreds of outdoor images in different light conditions, and they show high robustness. This project is part of the research taking place in Dalarna University / Sweden in the field of the ITS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: It has been shown that specific competence is necessary for preventing and managing conflicts in healthcare settings. The aim of this descriptive and correlation study was to investigate and compare the self-reported conflict management competence (CMC) of nursing students who were on the point of graduating (NSPGs), and the CMC of registered nurses (RNs) with professional experience. Methods: The data collection, which consisted of soliciting answers to items measuring CMC in the Nurse Professional Competence (NPC) Scale, was performed as a purposive selection of 11 higher education institutions (HEIs) in Sweden. Three CMC items from the NPC Scale were answered by a total of 569 nursing students who were on the point of graduating and 227 RN registered nurses with professional experience. Results: No significant differences between NSPGs and RNs were found, and both groups showed a similar score pattern, with the lowest score for the item: “How do you perceive your ability to develop the group and strengthen competence in conflict management and problem-solving, based on knowledge of group dynamics?”. RNs with long professional experience (>24 months) rated their overall CMC as significantly better than RNs with short (<24 months) professional experience did (p = .05). NSPGs who had experience of international studies during their nursing education reported higher CMC, compared with those who did not have this experience (p = .03). RNs who reported a high degree of utilisation of CMC during the previous month scored higher regarding self-reported overall CMC (p < .0001). Conclusions: Experience of international studies during nursing education, or long professional experience, resulted in higher self-reported CMC. Hence, the CMC items in the NPC Scale can be suitable for identifying self-reported conflict management competence among NSPGs and RNs