4 resultados para technology management
em CUNY Academic Works
Resumo:
Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.
Resumo:
We employ a moment-based approach to empirically analyse farmer’s decisions about adoption of tube-well technology under depleting groundwater resources using a farm level data from 200 farming households in the Punjab province, Pakistan. The results indicate that the higher the expected profit the greater the probability of adoption. Similarly, with increasing variance the probability of adopting tube-well increases significantly indicating that farmers choose to adopt tube-well technology in order to hedge against production risks. Statistical non-significant the third moment i.e., skewness indicates that farmer generally do not consider downside yield risk when decide to adopt tube-well technology whereas highly significant fourth moment (kurtosis) employ that probability of adoption decreases as a result of extreme events in profit distribution. In addition, we show that land tenureship and three other exogenous variables, i.e., extension services, access to different sources of information and off-farm income play a significant role in the adoption process.
Resumo:
Driven by Web 2.0 technology and the almost ubiquitous presence of mobile devices, Volunteered Geographic Information (VGI) is knowing an unprecedented growth. These notable technological advancements have opened fruitful perspectives also in the field of water management and protection, raising the demand for a reconsideration of policies which also takes into account the emerging trend of VGI. This research investigates the opportunity of leveraging such technology to involve citizens equipped with common mobile devices (e.g. tablets and smartphones) in a campaign of report of water-related phenomena. The work is carried out in collaboration with ADBPO - Autorità di bacino del fiume Po (Po river basin Authority), i.e. the entity responsible for the environmental planning and protection of the basin of river Po. This is the longest Italian river, spreading over eight among the twenty Italian Regions and characterized by complex environmental issues. To enrich ADBPO official database with user-generated contents, a FOSS (Free and Open Source Software) architecture was designed which allows not only user field-data collection, but also data Web publication through standard protocols. Open Data Kit suite allows users to collect georeferenced multimedia information using mobile devices equipped with location sensors (e.g. the GPS). Users can report a number of environmental emergencies, problems or simple points of interest related to the Po river basin, taking pictures of them and providing other contextual information. Field-registered data is sent to a server and stored into a PostgreSQL database with PostGIS spatial extension. GeoServer provides then data dissemination on the Web, while specific OpenLayers-based viewers were built to optimize data access on both desktop computers and mobile devices. Besides proving the suitability of FOSS in the frame of VGI, the system represents a successful prototype for the exploitation of user local, real-time information aimed at managing and protecting water resources.
Resumo:
New business and technology platforms are required to sustainably manage urban water resources [1,2]. However, any proposed solutions must be cognisant of security, privacy and other factors that may inhibit adoption and hence impact. The FP7 WISDOM project (funded by the European Commission - GA 619795) aims to achieve a step change in water and energy savings via the integration of innovative Information and Communication Technologies (ICT) frameworks to optimize water distribution networks and to enable change in consumer behavior through innovative demand management and adaptive pricing schemes [1,2,3]. The WISDOM concept centres on the integration of water distribution, sensor monitoring and communication systems coupled with semantic modelling (using ontologies, potentially connected to BIM, to serve as intelligent linkages throughout the entire framework) and control capabilities to provide for near real-time management of urban water resources. Fundamental to this framework are the needs and operational requirements of users and stakeholders at domestic, corporate and city levels and this requires the interoperability of a number of demand and operational models, fed with data from diverse sources such as sensor networks and crowsourced information. This has implications regarding the provenance and trustworthiness of such data and how it can be used in not only the understanding of system and user behaviours, but more importantly in the real-time control of such systems. Adaptive and intelligent analytics will be used to produce decision support systems that will drive the ability to increase the variability of both supply and consumption [3]. This in turn paves the way for adaptive pricing incentives and a greater understanding of the water-energy nexus. This integration is complex and uncertain yet being typical of a cyber-physical system, and its relevance transcends the water resource management domain. The WISDOM framework will be modeled and simulated with initial testing at an experimental facility in France (AQUASIM – a full-scale test-bed facility to study sustainable water management), then deployed and evaluated in in two pilots in Cardiff (UK) and La Spezia (Italy). These demonstrators will evaluate the integrated concept providing insight for wider adoption.