3 resultados para technology governance risk
em CUNY Academic Works
Resumo:
We employ a moment-based approach to empirically analyse farmer’s decisions about adoption of tube-well technology under depleting groundwater resources using a farm level data from 200 farming households in the Punjab province, Pakistan. The results indicate that the higher the expected profit the greater the probability of adoption. Similarly, with increasing variance the probability of adopting tube-well increases significantly indicating that farmers choose to adopt tube-well technology in order to hedge against production risks. Statistical non-significant the third moment i.e., skewness indicates that farmer generally do not consider downside yield risk when decide to adopt tube-well technology whereas highly significant fourth moment (kurtosis) employ that probability of adoption decreases as a result of extreme events in profit distribution. In addition, we show that land tenureship and three other exogenous variables, i.e., extension services, access to different sources of information and off-farm income play a significant role in the adoption process.
Resumo:
With the change of the water environment in accordance with climate change, the loss of lives and properties has increased due to urban flood. Although the importance of urban floods has been highlighted quickly, the construction of advancement technology of an urban drainage system combined with inland-river water and its relevant research has not been emphasized in Korea. In addition, without operation in consideration of combined inland-river water, it is difficult to prevent urban flooding effectively. This study, therefore, develops the uncertainty quantification technology of the risk-based water level and the assessment technology of a flood-risk region through a flooding analysis of the combination of inland-river. The study is also conducted to develop forecast technology of change in the water level of an urban region through the construction of very short-term/short-term flood forecast systems. This study is expected to be able to build an urban flood forecast system which makes it possible to support decision making for systematic disaster prevention which can cope actively with climate change.
Resumo:
The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100‐year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city’s water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware ‐‐ and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo‐reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back upto 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754).