3 resultados para sources of property market information

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

GCM outputs such as CMIP3 are available via network access to PCMDI web site. Meteorological researchers are familiar with the usage of the GCM data, but the most of researchers other than meteorology such as agriculture, civil engineering, etc., and general people are not familiar with the GCM. There are some difficulties to use GCM; 1) to download the enormous quantity of data, 2) to understand the GCM methodology, parameters and grids. In order to provide a quick access way to GCM, Climate Change Information Database has been developed. The purpose of the database is to bridge the users and meteorological specialists and to facilitate the understanding the climate changes. The resolution of the data is unified, and climate change amount or factors for each meteorological element are provided from the database. All data in the database are interpolated on the same 80km mesh. Available data are the present-future projections of 27 GCMs, 16 meteorological elements (precipitation, temperature, etc.), 3 emission scenarios (A1B, A2, B1). We showed the summary of this database to residents in Toyama prefecture and measured the effect of showing and grasped the image for the climate change by using the Internet questionary survey. The persons who feel a climate change at the present tend to feel the additional changes in the future. It is important to show the monitoring results of climate change for a citizen and promote the understanding for the climate change that had already occurred. It has been shown that general images for the climate change promote to understand the need of the mitigation, and that it is important to explain about the climate change that might occur in the future even if it did not occur at the present in order to have people recognize widely the need of the adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Enriquillo and Azuei are saltwater lakes located in a closed water basin in the southwestern region of the island of La Hispaniola, these have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of Lake Enriquillo presented a surface area of approximately 276 km2 in 1984, gradually decreasing to 172 km2 in 1996. The surface area of the lake reached its lowest point in the satellite observation record in 2004, at 165 km2. Then the recent growth of the lake began reaching its 1984 size by 2006. Based on surface area measurement for June and July 2013, Lake Enriquillo has a surface area of ~358 km2. Sumatra sizes at both ends of the record are 116 km2 in 1984 and 134 km2in 2013, an overall 15.8% increase in 30 years. Determining the causes of lake surface area changes is of extreme importance due to its environmental, social, and economic impacts. The overall goal of this study is to quantify the changing water balance in these lakes and their catchment area using satellite and ground observations and a regional atmospheric-hydrologic modeling approach. Data analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions. Historical data show precipitation, land surface temperature and humidity, and sea surface temperature (SST), increasing over region during the past decades. Salinity levels have also been decreasing by more than 30% from previously reported baseline levels. Here we present a summary of the historical data obtained, new sensors deployed in the sourrounding sierras and the lakes, and the integrated modeling exercises. As well as the challenges of gathering, storing, sharing, and analyzing this large volumen of data in a remote location from such a diverse number of sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing river geospatial data. Eventually, river geospatial data has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. In this study a plan was suggested both to respond to these changes in the information envirnment and to provide a future Smart River-based river information service by understanding the current state of river geospatial data model, improving, redesigning the database. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system, capable of adapting to the changes of a river management paradigm.