1 resultado para soil moisture
em CUNY Academic Works
Resumo:
Microwave remote sensing has high potential for soil moisture retrieval. However, the efficient retrieval of soil moisture depends on optimally choosing the soil moisture retrieval parameters. In this study first the initial evaluation of SMOS L2 product is performed and then four approaches regarding soil moisture retrieval from SMOS brightness temperature are reported. The radiative transfer equation based tau-omega rationale is used in this study for the soil moisture retrievals. The single channel algorithms (SCA) using H polarisation is implemented with modifications, which includes the effective temperatures simulated from ECMWF (downscaled using WRF-NOAH Land Surface Model (LSM)) and MODIS. The retrieved soil moisture is then utilized for soil moisture deficit (SMD) estimation using empirical relationships with Probability Distributed Model based SMD as a benchmark. The square of correlation during the calibration indicates a value of R2 =0.359 for approach 4 (WRF-NOAH LSM based LST with optimized roughness parameters) followed by the approach 2 (optimized roughness parameters and MODIS based LST) (R2 =0.293), approach 3 (WRF-NOAH LSM based LST with no optimization) (R2 =0.267) and approach 1(MODIS based LST with no optimization) (R2 =0.163). Similarly, during the validation a highest performance is reported by approach 4. The other approaches are also following a similar trend as calibration. All the performances are depicted through Taylor diagram which indicates that the H polarisation using ECMWF based LST is giving a better performance for SMD estimation than the original SMOS L2 products at a catchment scale.