3 resultados para semi-parametri model

em CUNY Academic Works


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reliable evaluation of the flood forecasting is a crucial problem for assessing flood risk and consequent damages. Different hydrological models (distributed, semi-distributed or lumped) have been proposed in order to deal with this issue. The choice of the proper model structure has been investigated by many authors and it is one of the main sources of uncertainty for a correct evaluation of the outflow hydrograph. In addition, the recent increasing of data availability makes possible to update hydrological models as response of real-time observations. For these reasons, the aim of this work it is to evaluate the effect of different structure of a semi-distributed hydrological model in the assimilation of distributed uncertain discharge observations. The study was applied to the Bacchiglione catchment, located in Italy. The first methodological step was to divide the basin in different sub-basins according to topographic characteristics. Secondly, two different structures of the semi-distributed hydrological model were implemented in order to estimate the outflow hydrograph. Then, synthetic observations of uncertain value of discharge were generated, as a function of the observed and simulated value of flow at the basin outlet, and assimilated in the semi-distributed models using a Kalman Filter. Finally, different spatial patterns of sensors location were assumed to update the model state as response of the uncertain discharge observations. The results of this work pointed out that, overall, the assimilation of uncertain observations can improve the hydrologic model performance. In particular, it was found that the model structure is an important factor, of difficult characterization, since can induce different forecasts in terms of outflow discharge. This study is partly supported by the FP7 EU Project WeSenseIt.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years extreme hydrometeorological phenomena have increased in number and intensity affecting the inhabitants of various regions, an example of these effects are the central basins of the Gulf of Mexico (CBGM) that they have been affected by 55.2% with floods and especially the state of Veracruz (1999-2013), leaving economic, social and environmental losses. Mexico currently lacks sufficient hydrological studies for the measurement of volumes in rivers, since is convenient to create a hydrological model (HM) suited to the quality and quantity of the geographic and climatic information that is reliable and affordable. Therefore this research compares the semi-distributed hydrological model (SHM) and the global hydrological model (GHM), with respect to the volumes of runoff and achieve to predict flood areas, furthermore, were analyzed extreme hydrometeorological phenomena in the CBGM, by modeling the Hydrologic Modeling System (HEC-HMS) which is a SHM and the Modèle Hydrologique Simplifié à I'Extrême (MOHYSE) which is a GHM, to evaluate the results and compare which model is suitable for tropical conditions to propose public policies for integrated basins management and flood prevention. Thus it was determined the temporal and spatial framework of the analyzed basins according to hurricanes and floods. It were developed the SHM and GHM models, which were calibrated, validated and compared the results to identify the sensitivity to the real model. It was concluded that both models conform to tropical conditions of the CBGM, having MOHYSE further approximation to the real model. Worth mentioning that in Mexico there is not enough information, besides there are no records of MOHYSE use in Mexico, so it can be a useful tool for determining runoff volumes. Finally, with the SHM and the GHM were generated climate change scenarios to develop risk studies creating a risk map for urban planning, agro-hydrological and territorial organization.