3 resultados para presentation layer

em CUNY Academic Works


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presented work deals with the calibration of a 2D numerical model for the simulation of long term bed load transport. A settled basin along an alpine stream was used as a case study. The focus is to parameterise the used multi fractional transport model such that a dynamically balanced behavior regarding erosion and deposition is reached. The used 2D hydrodynamic model utilizes a multi-fraction multi-layer approach to simulate morphological changes and bed load transport. The mass balancing is performed between three layers: a top mixing layer, an intermediate subsurface layer and a bottom layer. Using this approach bears computational limitations in calibration. Due to the high computational demands, the type of calibration strategy is not only crucial for the result, but as well for the time required for calibration. Brute force methods such as Monte Carlo type methods may require a too large number of model runs. All here tested calibration strategies used multiple model runs utilising the parameterization and/or results from previous run. One concept was to reset to initial bed elevations after each run, allowing the resorting process to convert to stable conditions. As an alternative or in combination, the roughness was adapted, based on resulting nodal grading curves, from the previous run. Since the adaptations are a spatial process, the whole model domain is subdivided in homogeneous sections regarding hydraulics and morphological behaviour. For a faster optimization, the adaptation of the parameters is made section wise. Additionally, a systematic variation was done, considering results from previous runs and the interaction between sections. The used approach can be considered as similar to evolutionary type calibration approaches, but using analytical links instead of random parameter changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Serious games are a category of games which are designed for a specific purpose other than for pure entertainment. It is not a new concept but serious games using real data, coupled with real time modelling and combining model results with social and economic factors opens up a new paradigm for active stakeholder participation. DHI and UNEP-DHI Centre initiated a project called Aqua Republica where a virtual world is developed which allows participants to develop a river basin and visualise the consequences of their decisions. The aim of this project is to raise awareness of the interconnectivity of water and educate on integrated water resources management. Aqua Republica combines a game layer with a water allocation model, MIKE BASIN, to create an interactive, realistic virtual environment where players play the role of a catchment manager of an undeveloped river catchment. Their main objective is to develop the river catchment to be as prosperous as it can be. To achieve that, they will need to generate a good economy in the catchment to provide the funds needed for development, have a steady food supply for their population and enough energy and water for the catchment. Through these actions by the player, a meaningful play is established to engage players and to educate them about the complex relationships between developmental actions in a river basin and the natural environment as well as their consequences. The game layer also consists of a reward system to encourage learning. People can play and replay the game, get rewarded from performing the right principles and penalised from failures in the game. This abstract will explain the concept of the game and how it has been used in a stakeholder participation environment.