2 resultados para one-time passwords

em CUNY Academic Works


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biological nitrogen removal is an important task in the wastewater treatment. However, the actual removal of total nitrogen (TN) in the wastewater treatment plant (WWTP) is often unsatisfactory due to several causes, one of which is the insufficient availability of carbon source. One possible approach to improve the nitrogen removal therefore is addition of external carbon source, while the amount of which is directly related to operation cost of a WWTP. It is obviously necessary to determine the accurate amount of addition of external carbon source according to the demand depending on the influent wastewater quality. This study focused on the real-time control of external carbon source addition based on the on-line monitoring of influent wastewater quality. The relationship between the influent wastewater quality (specifically the concentration of COD and ammonia) and the demand of carbon source was investigated through experiments on a pilot-scale A/O reactor (1m3) at the Nanjing WWTP, China. The minimum doses of carbon source addition at different situations of influent wastewater quality were determined to ensure the effluent wastewater quality meets the discharge standard. The obtained relationship is expected to be applied in the full-scale WWTPs. .

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.