2 resultados para model reduction
em CUNY Academic Works
Resumo:
Canada releases over 150 billion litres of untreated and undertreated wastewater into the water environment every year1. To clean up urban wastewater, new Federal Wastewater Systems Effluent Regulations (WSER) on establishing national baseline effluent quality standards that are achievable through secondary wastewater treatment were enacted on July 18, 2012. With respect to the wastewater from the combined sewer overflows (CSO), the Regulations require the municipalities to report the annual quantity and frequency of effluent discharges. The City of Toronto currently has about 300 CSO locations within an area of approximately 16,550 hectares. The total sewer length of the CSO area is about 3,450 km and the number of sewer manholes is about 51,100. A system-wide monitoring of all CSO locations has never been undertaken due to the cost and practicality. Instead, the City has relied on estimation methods and modelling approaches in the past to allow funds that would otherwise be used for monitoring to be applied to the reduction of the impacts of the CSOs. To fulfill the WSER requirements, the City is now undertaking a study in which GIS-based hydrologic and hydraulic modelling is the approach. Results show the usefulness of this for 1) determining the flows contributing to the combined sewer system in the local and trunk sewers for dry weather flow, wet weather flow, and snowmelt conditions; 2) assessing hydraulic grade line and surface water depth in all the local and trunk sewers under heavy rain events; 3) analysis of local and trunk sewer capacities for future growth; and 4) reporting of the annual quantity and frequency of CSOs as per the requirements in the new Regulations. This modelling approach has also allowed funds to be applied toward reducing and ultimately eliminating the adverse impacts of CSOs rather than expending resources on unnecessary and costly monitoring.
Resumo:
Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.