2 resultados para isolation procedure
em CUNY Academic Works
Resumo:
Interoperability of water quality data depends on the use of common models, schemas and vocabularies. However, terms are usually collected during different activities and projects in isolation of one another, resulting in vocabularies that have the same scope being represented with different terms, using different formats and formalisms, and published in various access methods. Significantly, most water quality vocabularies conflate multiple concepts in a single term, e.g. quantity kind, units of measure, substance or taxon, medium and procedure. This bundles information associated with separate elements from the OGC Observations and Measurements (O&M) model into a single slot. We have developed a water quality vocabulary, formalized using RDF, and published as Linked Data. The terms were extracted from existing water quality vocabularies. The observable property model is inspired by O&M but aligned with existing ontologies. The core is an OWL ontology that extends the QUDT ontology for Unit and QuantityKind definitions. We add classes to generalize the QuantityKind model, and properties for explicit description of the conflated concepts. The key elements are defined to be sub-classes or sub-properties of SKOS elements, which enables a SKOS view to be published through standard vocabulary APIs, alongside the full view. QUDT terms are re-used where possible, supplemented with additional Unit and QuantityKind entries required for water quality. Along with items from separate vocabularies developed for objects, media, and procedures, these are linked into definitions in the actual observable property vocabulary. Definitions of objects related to chemical substances are linked to items from the Chemical Entities of Biological Interest (ChEBI) ontology. Mappings to other vocabularies, such as DBPedia, are in separately maintained files. By formalizing the model for observable properties, and clearly labelling the separate concerns, water quality observations from different sources may be more easily merged and also transformed to O&M for cross-domain applications.
Resumo:
When an accurate hydraulic network model is available, direct modeling techniques are very straightforward and reliable for on-line leakage detection and localization applied to large class of water distribution networks. In general, this type of techniques based on analytical models can be seen as an application of the well-known fault detection and isolation theory for complex industrial systems. Nonetheless, the assumption of single leak scenarios is usually made considering a certain leak size pattern which may not hold in real applications. Upgrading a leak detection and localization method based on a direct modeling approach to handle multiple-leak scenarios can be, on one hand, quite straightforward but, on the other hand, highly computational demanding for large class of water distribution networks given the huge number of potential water loss hotspots. This paper presents a leakage detection and localization method suitable for multiple-leak scenarios and large class of water distribution networks. This method can be seen as an upgrade of the above mentioned method based on a direct modeling approach in which a global search method based on genetic algorithms has been integrated in order to estimate those network water loss hotspots and the size of the leaks. This is an inverse / direct modeling method which tries to take benefit from both approaches: on one hand, the exploration capability of genetic algorithms to estimate network water loss hotspots and the size of the leaks and on the other hand, the straightforwardness and reliability offered by the availability of an accurate hydraulic model to assess those close network areas around the estimated hotspots. The application of the resulting method in a DMA of the Barcelona water distribution network is provided and discussed. The obtained results show that leakage detection and localization under multiple-leak scenarios may be performed efficiently following an easy procedure.