7 resultados para information interfaces and presentation

em CUNY Academic Works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This presentation was offered as part of the CUNY Library Assessment Conference, Reinventing Libraries: Reinventing Assessment, held at the City University of New York in June 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, libraries have started to design public programs that educate patrons about different tools and techniques to protect personal privacy. But do end user solutions provide adequate safeguards against surveillance by corporate and government actors? What does a comprehensive plan for privacy entail in order that libraries live up to their privacy values? In this paper, the authors discuss the complexity of surveillance architecture that the library institution might confront when seeking to defend the privacy rights of patrons. This architecture consists of three main parts: physical or material aspects, logical characteristics, and social factors of information and communication flows in the library setting. For each category, the authors will present short case studies that are culled from practitioner experience, research, and public discourse. The case studies probe the challenges faced by the library—not only when making hardware and software choices, but also choices related to staffing and program design. The paper shows that privacy choices intersect not only with free speech and chilling effects, but also with questions that concern intellectual property, organizational development, civic engagement, technological innovation, public infrastructure, and more. The paper ends with discussion of what libraries will require in order to sustain and improve efforts to serve as stewards of privacy in the 21st century.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

GCM outputs such as CMIP3 are available via network access to PCMDI web site. Meteorological researchers are familiar with the usage of the GCM data, but the most of researchers other than meteorology such as agriculture, civil engineering, etc., and general people are not familiar with the GCM. There are some difficulties to use GCM; 1) to download the enormous quantity of data, 2) to understand the GCM methodology, parameters and grids. In order to provide a quick access way to GCM, Climate Change Information Database has been developed. The purpose of the database is to bridge the users and meteorological specialists and to facilitate the understanding the climate changes. The resolution of the data is unified, and climate change amount or factors for each meteorological element are provided from the database. All data in the database are interpolated on the same 80km mesh. Available data are the present-future projections of 27 GCMs, 16 meteorological elements (precipitation, temperature, etc.), 3 emission scenarios (A1B, A2, B1). We showed the summary of this database to residents in Toyama prefecture and measured the effect of showing and grasped the image for the climate change by using the Internet questionary survey. The persons who feel a climate change at the present tend to feel the additional changes in the future. It is important to show the monitoring results of climate change for a citizen and promote the understanding for the climate change that had already occurred. It has been shown that general images for the climate change promote to understand the need of the mitigation, and that it is important to explain about the climate change that might occur in the future even if it did not occur at the present in order to have people recognize widely the need of the adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Short-term Water Information and Forecasting Tools (SWIFT) is a suite of tools for flood and short-term streamflow forecasting, consisting of a collection of hydrologic model components and utilities. Catchments are modeled using conceptual subareas and a node-link structure for channel routing. The tools comprise modules for calibration, model state updating, output error correction, ensemble runs and data assimilation. Given the combinatorial nature of the modelling experiments and the sub-daily time steps typically used for simulations, the volume of model configurations and time series data is substantial and its management is not trivial. SWIFT is currently used mostly for research purposes but has also been used operationally, with intersecting but significantly different requirements. Early versions of SWIFT used mostly ad-hoc text files handled via Fortran code, with limited use of netCDF for time series data. The configuration and data handling modules have since been redesigned. The model configuration now follows a design where the data model is decoupled from the on-disk persistence mechanism. For research purposes the preferred on-disk format is JSON, to leverage numerous software libraries in a variety of languages, while retaining the legacy option of custom tab-separated text formats when it is a preferred access arrangement for the researcher. By decoupling data model and data persistence, it is much easier to interchangeably use for instance relational databases to provide stricter provenance and audit trail capabilities in an operational flood forecasting context. For the time series data, given the volume and required throughput, text based formats are usually inadequate. A schema derived from CF conventions has been designed to efficiently handle time series for SWIFT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, two international standard organizations, ISO and OGC, have done the work of standardization for GIS. Current standardization work for providing interoperability among GIS DB focuses on the design of open interfaces. But, this work has not considered procedures and methods for designing river geospatial data. Eventually, river geospatial data has its own model. When we share the data by open interface among heterogeneous GIS DB, differences between models result in the loss of information. In this study a plan was suggested both to respond to these changes in the information envirnment and to provide a future Smart River-based river information service by understanding the current state of river geospatial data model, improving, redesigning the database. Therefore, primary and foreign key, which can distinguish attribute information and entity linkages, were redefined to increase the usability. Database construction of attribute information and entity relationship diagram have been newly redefined to redesign linkages among tables from the perspective of a river standard database. In addition, this study was undertaken to expand the current supplier-oriented operating system to a demand-oriented operating system by establishing an efficient management of river-related information and a utilization system, capable of adapting to the changes of a river management paradigm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I consider the case for genuinely anonymous web searching. Big data seems to have it in for privacy. The story is well known, particularly since the dawn of the web. Vastly more personal information, monumental and quotidian, is gathered than in the pre-digital days. Once gathered it can be aggregated and analyzed to produce rich portraits, which in turn permit unnerving prediction of our future behavior. The new information can then be shared widely, limiting prospects and threatening autonomy. How should we respond? Following Nissenbaum (2011) and Brunton and Nissenbaum (2011 and 2013), I will argue that the proposed solutions—consent, anonymity as conventionally practiced, corporate best practices, and law—fail to protect us against routine surveillance of our online behavior. Brunton and Nissenbaum rightly maintain that, given the power imbalance between data holders and data subjects, obfuscation of one’s online activities is justified. Obfuscation works by generating “misleading, false, or ambiguous data with the intention of confusing an adversary or simply adding to the time or cost of separating good data from bad,” thus decreasing the value of the data collected (Brunton and Nissenbaum, 2011). The phenomenon is as old as the hills. Natural selection evidently blundered upon the tactic long ago. Take a savory butterfly whose markings mimic those of a toxic cousin. From the point of view of a would-be predator the data conveyed by the pattern is ambiguous. Is the bug lunch or potential last meal? In the light of the steep costs of a mistake, the savvy predator goes hungry. Online obfuscation works similarly, attempting for instance to disguise the surfer’s identity (Tor) or the nature of her queries (Howe and Nissenbaum 2009). Yet online obfuscation comes with significant social costs. First, it implies free riding. If I’ve installed an effective obfuscating program, I’m enjoying the benefits of an apparently free internet without paying the costs of surveillance, which are shifted entirely onto non-obfuscators. Second, it permits sketchy actors, from child pornographers to fraudsters, to operate with near impunity. Third, online merchants could plausibly claim that, when we shop online, surveillance is the price we pay for convenience. If we don’t like it, we should take our business to the local brick-and-mortar and pay with cash. Brunton and Nissenbaum have not fully addressed the last two costs. Nevertheless, I think the strict defender of online anonymity can meet these objections. Regarding the third, the future doesn’t bode well for offline shopping. Consider music and books. Intrepid shoppers can still find most of what they want in a book or record store. Soon, though, this will probably not be the case. And then there are those who, for perfectly good reasons, are sensitive about doing some of their shopping in person, perhaps because of their weight or sexual tastes. I argue that consumers should not have to pay the price of surveillance every time they want to buy that catchy new hit, that New York Times bestseller, or a sex toy.